Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+b+c=\sqrt{6063}\Leftrightarrow\dfrac{a}{\sqrt{2021}}+\dfrac{b}{\sqrt{2021}}+\dfrac{c}{\sqrt{2021}}=\sqrt{3}\)
Đặt \(\left(\dfrac{a}{\sqrt{2021}};\dfrac{b}{\sqrt{2021}};\dfrac{c}{\sqrt{2021}}\right)=\left(x;y;z\right)\Rightarrow x+y+z=\sqrt{3}\)
\(P=\dfrac{2x}{\sqrt{2x^2+1}}+\dfrac{2y}{\sqrt{2y^2+1}}+\dfrac{2z}{\sqrt{2z^2+1}}\)
Ta có đánh giá:
\(\dfrac{x}{\sqrt{2x^2+1}}\le\dfrac{3\sqrt{15}x+2\sqrt{5}}{25}\)
Thật vậy, BĐT tương đương:
\(\left(\sqrt{3}x-1\right)^2\left(9x^2+10\sqrt{3}x+2\right)\ge0\) (luôn đúng)
Tương tự và cộng lại:
\(P\le\dfrac{6\sqrt{15}\left(x+y+z\right)+12\sqrt{5}}{25}=\dfrac{6\sqrt{5}}{5}\)
\(\frac{x^2+10}{x^2+2}\)= \(\frac{x^2+2+8}{x^2+2}\)=\(\frac{8}{x^2+2}\)+1
Để A đạt GTLN thì:
\(x^2+2\)Đạt GTNN
=> \(x^2+2=3\)Để A đạt GTLN
=> GTLN CỦA A là 1+\(\frac{10}{3}\)=> GTLN của A với x khác 0 là \(\frac{13}{3}\)
TH x=0 thì \(x^2+2=0+2=0\Rightarrow\frac{x^2+10}{x^2+2}\) Đạt GTLN là 5
\(P=\frac{xy+x+y+2}{x+y+2}=\frac{xy}{x+y+2}+1\)
Đặt \(Q=\frac{x+y+2}{xy}=\frac{1}{x}+\frac{1}{y}+\frac{2}{xy}\)
Ta có: \(4=x^2+y^2\ge2xy\Leftrightarrow xy\le2\)
\(\left(x+y\right)^2\le2\left(x^2+y^2\right)=8\Rightarrow x+y\le2\sqrt{2}\)
\(Q=\frac{1}{x}+\frac{1}{y}+\frac{2}{xy}\ge\frac{4}{x+y}+\frac{2}{xy}\ge\frac{4}{2\sqrt{2}}+\frac{2}{2}=1+\sqrt{2}\)
Suy ra \(P\le\frac{1}{1+\sqrt{2}}+1=\frac{\sqrt{2}-1}{\left(1+\sqrt{2}\right)\left(\sqrt{2}-1\right)}+1=\sqrt{2}\).
Dấu \(=\)khi \(x=y=\sqrt{2}\).
TL:
P=xy+x+y+2x+y+2 =xyx+y+2 +1
Đặt Q=x+y+2xy =1x +1y +2xy
Ta có: 4=x2+y2≥2xy⇔xy≤2
(x+y)2≤2(x2+y2)=8⇒x+y≤2√2
Q=1x +1y +2xy ≥4x+y +2xy ≥42√2 +22 =1+√2
Suy ra P≤11+√2 +1=√2−1(1+√2)(√2−1) +1=√2.
Dấu = khi x=y=√2.
^HT^
Đặt \(t=\sqrt{x},t\ge0\)
- \(B=\frac{3t^2+t+10}{t+1}=\frac{3\left(t^2-2t+1\right)+7\left(t+1\right)}{t+1}=\frac{3\left(t-1\right)^2}{t+1}+7\ge7\)
Dấu "=" xảy ra khi t = 1 <=> x = 1
B đạt giá trị nhỏ nhất bằng 7 tại x = 1
- Không tồn tại giá trị lớn nhất.
\(a.A=\sqrt{x}-3+\frac{10-x}{\sqrt{x}+3}=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\sqrt{x}+3}+\frac{10-x}{\sqrt{x}+3}=\frac{x-9+10-x}{\sqrt{x}+3}=\frac{1}{\sqrt{x}+3}=\frac{\sqrt{x}-3}{x-9}\)
\(b.\)Ta có: \(\sqrt{x}\ge0\forall x\Rightarrow\sqrt{x}+3\ge3\forall x\Rightarrow\frac{1}{\sqrt{x}+3}\ge\frac{1}{3}\forall x\)
Vậy \(A_{Min}=\frac{1}{3}\Leftrightarrow x=0\)
\(A=\dfrac{x^2+10}{x^2+2}=\dfrac{x^2+2+8}{x^2+2}=1+\dfrac{8}{x^2+2}\text{ ≤}1+\dfrac{8}{2}=5\)
⇒ \(A_{Max}=5."="\) ⇔ \(x=0\)
ai giúp tôi với
ĐKXĐ: \(x\ge0\)
\(B=-x-2021+10\sqrt{x}=-\left(x-10\sqrt{x}+25\right)-1996\)
\(=-\left(\sqrt{x}-5\right)^2-1996\le-1996\)
\(maxB=-1996\Leftrightarrow\sqrt{x}=5\Leftrightarrow x=25\left(tm\right)\)