Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
\(BC^2=AB^2+AC^2\)
nên ΔBAC vuông tại A
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH=\dfrac{4\cdot5\cdot6}{7.5}=3.6\left(cm\right)\)
c: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{6^2}{7.5}=4.8\left(cm\right)\\CH=\dfrac{4.5^2}{7.5}=2.7\left(cm\right)\end{matrix}\right.\)
C A B H
a) Ta có: \(AC^2+AB^2=4,5^2+6^2=56,25\)
\(BC^2=7,5^2=56,25\)
suy ra: \(AC^2+AB^2=BC^2\)
hay tam giác ABC vuông tại A
Áp dụng hệ thức lượng ta có:
\(AH.BC=AB.AC\)
\(\Rightarrow\)\(AH=\frac{AB.AC}{BC}=3,6\)
b) Áp dụng hệ thức lượng ta có:
\(AB^2=BH.BC\)
\(\Rightarrow\)\(BH=\frac{AB^2}{BC}=4,8\)
\(\Rightarrow\)\(HC=BC-BH=7,5-4,8=2,7\)
b)Để SMBC = SABC thì M phải cách BC một khoảng bằng AH. Do đó M phải nằm bên trên hai đường thẳng song song với BC, cách BC một khoảng bằng 3,6cm.
Ý bạn là giả thiết ko cho ABC là tam giác vuông chứ gì, bạn phải tự cm: Ta có: AC2+AB2=56,25=BC2 <=> Tam giác ABC vuông tại A.
=> AH=AB.AC/BC=3,6 ; BH=AB2/BC=4,8 ; CH=BC-BH=2,7
bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!
rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ
a, Ta có : \(BC^2=AB^2+AC^2\Leftrightarrow56,25=20,25+36\)* đúng *
Vậy tam giác ABC vuông tại A
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=3,6\)cm
b, Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{36}{7,5}=4,8\)cm
=> CH = BC - BH = 7,5 - 4,8 = 2,7 cm