
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.




Theo mình đoán là phương trình này vô nghiệm. Nhưng mình không chứng minh được điều này :((

Điều kiện xác định: \(x\ne1;3\)
Với điều kiện xác định như trên:
\(\frac{3}{x-3}-\frac{2}{x-1}=\frac{x-1}{2}-\frac{x-3}{3}\)
\(\Leftrightarrow\frac{3\left(x-1\right)-2\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}=\frac{3\left(x-1\right)-2\left(x-3\right)}{6}\)
\(\Leftrightarrow\frac{x+3}{\left(x-1\right)\left(x-3\right)}=\frac{x+3}{6}\)
\(\Leftrightarrow\left(x+3\right)\left(\frac{1}{\left(x-1\right)\left(x-3\right)}-\frac{1}{6}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\\left(x-1\right)\left(x-3\right)=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\left(tm\right)\\\left(x-4x+3-6=0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\pm\sqrt{7}\left(tm\right)\end{matrix}\right.\)
Vậy phương trình có 3 nghiệm \(x=-3\) hoặc \(x=2\pm\sqrt{7}\)

\(\sqrt[3]{x+1}+\sqrt[3]{x+2}=1+\sqrt[3]{x^2+3x+2}\)
\(\Rightarrow\sqrt[3]{x+1}+\sqrt[3]{x+2}=1+\sqrt[3]{\left(x+1\right)\left(x+2\right)}\)
\(\Rightarrow\sqrt[3]{x+1}-1-\sqrt[3]{x+1}.\sqrt[3]{x+2}+\sqrt[3]{x+2}=0\)
\(\Rightarrow\left(\sqrt[3]{x+1}-1\right)-\sqrt[3]{x+2}\left(\sqrt[3]{x+1}-1\right)=0\)
\(\Rightarrow\left(\sqrt[3]{x+1}-1\right)\left(1-\sqrt[3]{x+2}\right)=0\)
Th1 : \(\sqrt[3]{x+1}-1=0\Rightarrow\sqrt[3]{x+1}=1\)
\(\Rightarrow x+1=1\Rightarrow x=0\)
Th2 : \(\sqrt[3]{x+2}-1=0\Rightarrow\sqrt[3]{x+2}=1\)
\(\Rightarrow x+2=1\Rightarrow x=-1\)
Vậy \(x\in\left\{0;-1\right\}\)

đK: ...
đặt \(\sqrt{x}=a;\sqrt{x+3}=b\) (a;b \(\ne0\))
có: 2a + b = \(\dfrac{2}{a}+a^2b\)
=> \(2a-\dfrac{2}{a}=a^2b-b\)
=> \(\dfrac{2a^2-2}{a}=b\left(a^2-1\right)\)
=> 2 = ab = \(\sqrt{x\left(x+3\right)}\)
=> 4 = x(x + 3)
=> x2 + 3x - 4 = 0
x = 1 thỏa mãn

