![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^5-x^4+3x^3+3x^2-x+1=0\)
\(\Leftrightarrow x^5+x^4-2x^4-2x^3+5x^3+5x^2-2x^2-2x+x+1=0\)
\(\Leftrightarrow x^4\left(x+1\right)-2x^3\left(x+1\right)+5x^2\left(x+1\right)-2x\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^4-2x^3+5x^2-2x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x^4-2x^3+5x^2-2x+1=0\left(#\right)\end{cases}}\)
\(\Leftrightarrow x=-1\)(vì biểu thức # vô nghiệm) (cái này bạn tự cm)
vậy....
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt x2-3x+4=a
=>\(\frac{1}{a-1}+\frac{2}{a}=\frac{6}{a+1}\)
ĐKXĐ:a khác 1 ; -1 ;0
=>a2+a+2a2-2=6a2-6a
<=>6a2-3a2-a-6a+2=0
<=>3a2-7a+2=0
<=>(3a-1)(a-2)=0
<=>a=1/3 hoặc a=2
*)a=1/3
=>x2-3x+4=1/3
<=>x2-3x+11/3=0
<=>(x-1,5)2+17/12=0(vô lí)
*)a=2
=>x2-3x+4=2
<=>x2-3x+2=0
<=>(x-1)(x-2)=0
<=>x=1 hoặc x=2
Vậy x={1;2}
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(x+2\right)\left(x+3\right)\left(x+8\right)\left(x+12\right)-3x^2=0\)
\(\Leftrightarrow\left[\left(x+2\right)\left(x+12\right)\right]\left[\left(x+3\right)\left(x+8\right)\right]-3x^2=0\)
\(\Leftrightarrow\left(x^2+14x+24\right)\left(x^2+11x+24\right)-3x^2=0\)
Đặt \(x^2+11x+24=a\)
\(\Rightarrow pt:a\left(a+3x\right)-3x^2=0\)
\(\Leftrightarrow a^2+3ax-3x^2=0\)
\(\Leftrightarrow4a^2+12ax-12x^2=0\)
\(\Leftrightarrow\left(2a+3x\right)^2=21x^2\)
\(\Leftrightarrow\orbr{\begin{cases}2a+3x=x\sqrt{21}\\2a+3x=-x\sqrt{21}\end{cases}}\)
*Với \(2a+3x=x\sqrt{21}\)
\(\Leftrightarrow2x^2+22x+48+3x-x\sqrt{21}=0\)
\(\Leftrightarrow2x^2+x\left(25-\sqrt{21}\right)+48=0\)
Có \(\Delta=262-50\sqrt{21}>0\)
Nên pt có nghiệm \(x=\frac{\sqrt{21}-25\pm\sqrt{262-50\sqrt{21}}}{4}\)
Trường hợp còn lại làm tương tự
![](https://rs.olm.vn/images/avt/0.png?1311)
b) PT \(\Leftrightarrow15x\left(5x+3\right)-35\left(5x+3\right)=0\)
\(\Leftrightarrow\left(15x-35\right)\left(5x+3\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=-\dfrac{3}{5}\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{3}{5};\dfrac{7}{3}\right\}\)
c) PT \(\Leftrightarrow\left(2-3x\right)\left(x-11\right)+\left(2-3x\right)\left(2-5x\right)=0\)
\(\Leftrightarrow\left(2-3x\right)\left(-9-4x\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{9}{4}\end{matrix}\right.\)
Vậy \(S=\left\{\dfrac{2}{3};-\dfrac{9}{4}\right\}\)
a)(x-1)(5x+3)=(3x-8)(x-1)
\(\Leftrightarrow\)(x-1)(5x+3)-(3x-8)(x-1)=0
\(\Leftrightarrow\left(x-1\right)\left(5x-3-3x+8\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-5\right)=0\)
\(\left[{}\begin{matrix}x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{5}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{1;\dfrac{5}{2}\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(1\right)\Leftrightarrow2x-3x^2+11-33x=6x-4-15x^2+10x\)
\(\Leftrightarrow12x^2-47x+15=0\)
\(\Delta=47^2-4.12.15=1489,\sqrt{\Delta}=\sqrt{1489}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{47+\sqrt{1489}}{24}\\x=\frac{47-\sqrt{1489}}{24}\end{cases}}\)
\(\left(2\right)\Leftrightarrow\frac{\left(x-3\right)^2-\left(x+3\right)^2}{x^2-9}=\frac{-5}{x^2-9}\)
\(\Leftrightarrow\left(x-3\right)^2-\left(x+3\right)^2=-5\)
\(\Leftrightarrow x^2-6x+9-x^2-6x-9=-5\)
\(\Leftrightarrow-12x=-5\Leftrightarrow x=\frac{5}{12}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
(3x+4)2-(3x-1).(3x+1)=49
<=> 9x2+24x+16-(9x2-1)=49
<=>9x2+24x+16-9x2+1=49
<=>24x+17=49
<=>24x =32
<=>x =4/3
Vậy ...
(x+2).(x^2-2x+4)-x.(x+3).(x-3)
=x3+8-x(x2-9)
=x3+8-x3+9x
=9x+8
(3x+4)2-(3x-1).(3x+1)=49
<=> 9x2+24x+16-(9x2-1)=49
<=>9x2+24x+16-9x2+1=49
<=>24x+17=49
<=>24x =32
<=>x =4/3
Vậy ...
(x+2).(x^2-2x+4)-x.(x+3).(x-3)
=x3+8-x(x2-9)
=x3+8-x3+9x
=9x+8
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(2\left(x+3\right)-x^2-3x=0\)
\(\Leftrightarrow2\left(x+3\right)-\left(x^2+3x\right)=0\)
\(\Leftrightarrow2\left(x+3\right)-x\left(x+3\right)=0\)
\(\Leftrightarrow\left(2-x\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2-x=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-3;2\right\}\)
c) \(3x\left(x-5\right)-x^2+25=0\)
\(\Leftrightarrow3x\left(x-5\right)-\left(x^2-25\right)=0\)
\(\Leftrightarrow3x\left(x-5\right)-\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(3x-x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(2x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\2x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\2x=5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=\frac{5}{2}\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{5;\frac{5}{2}\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1. \(\Leftrightarrow\left(x-6\right)\left(x+7\right)+5\left(x-6\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left[\left(x+7\right)+5\left(3x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-6\right)\left(16x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\16x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-\frac{1}{8}\end{matrix}\right.\)
4. \(\Leftrightarrow\left(x+5\right)^2\left(3x+2\right)^2-x^2\left(x+5\right)^2=0\)
\(\Leftrightarrow\left(x+5\right)^2\left[\left(3x+2\right)^2-x^2\right]=0\)
\(\Leftrightarrow\left(x+5\right)^2\left(2x+2\right)\left(4x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x+5\right)^2=0\\2x+2=0\\4x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x=-2\\4x=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-1\\x=-\frac{1}{2}\end{matrix}\right.\)