\(x^2+\sqrt[3]{x^4-x^2}=2x+1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2018

c) Ta có:

\(\sqrt{x+\frac{3}{x}}=\frac{x^2+7}{2\left(x+1\right)}\)

\(\Leftrightarrow\sqrt{x+\frac{3}{x}}-2=\frac{x^2+7}{2\left(x+1\right)}-2\)

\(\Leftrightarrow\frac{\sqrt{x^2+3}-2\sqrt{x}}{\sqrt{x}}=\frac{x^2-4x+3}{2\left(x+1\right)}\)

\(\Leftrightarrow\frac{x^2-4x+3}{\sqrt{x^3+3x}+2x}=\frac{x^2-4x+3}{2\left(x+1\right)}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-4x+3=0\\\sqrt{x^3+3x}+2x=2\left(x+1\right)\end{cases}}\)

+) \(x^2-4x+3=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)

+) \(\sqrt{x^3+3x}+2x=2x+2\Rightarrow x=1\)

19 tháng 10 2018

a/ Đặt \(\sqrt{2\left(x^2-x\right)}=a\)

\(\Rightarrow a^4-2a^2=a\)

\(\Leftrightarrow a\left(a+1\right)\left(a^2-a-1\right)=0\)

1 tháng 7 2019

tth, Hoàng Tử Hà, Bonking, Quoc Tran Anh Le, Vũ Huy Hoàng,

Akai Haruma, @Nguyễn Việt Lâm

giúp mk vs! ngày mai phải nộp r

18 tháng 6 2019

Với Kho Đề đã được cập nhật, hiện tại Đáp Án Chi Tiết môn TOÁN Kỳ thi THPT quốc gia đã có trên Ứng Dụng. Các bạn tha hồ kiểm tra đối chiếu với bài làm của mình rồi nhé Tải ngay App về để xem đáp án chi tiết nào: https://giaingay.com.vn/downapp.html

18 tháng 7 2019

MN ƠI GIÚP MK NHA

14 tháng 8 2016
a/ x = 1 b/ x = 3
15 tháng 8 2016

cách làm ????

21 tháng 7 2019

MN ƠI GIÚP MK NHA MAI MIK ĐI HOK R

21 tháng 7 2019

nhìn mà nhác giải vl :v

a) \(\sqrt{3x^2-2x+1}+4x=\sqrt{3x^2+2x}+1\)

<=> \(\sqrt{3x^2-2x+1}=\sqrt{3x^2+2x}+1-4x\)

<=> \(\left(\sqrt{3x^2-2x+1}\right)^2=\left(\sqrt{3x^2+2x}+1-4x\right)^2\)

<=> \(3x^2-2x+1=19x^2-8\sqrt{3x^2+2x}.x-6x+2\sqrt{3x^2+2x}+1\)

<=> \(-16x^2+8\sqrt{3x^2+2x}.x+4x-2\sqrt{3x^2+2x}=0\)

<=> \(-2\left(4x-1\right)\left(2x-\sqrt{3x^2+2x}\right)=0\)

<=> \(\hept{\begin{cases}x=\frac{1}{4}\\x=0\\x=2\end{cases}}\) <=> \(\orbr{\begin{cases}x=\frac{1}{4}\\x=0\end{cases}}\) (vì k có ngoặc vuông 3 nên mình dùng tạm ngoặc nhọn, thông cảm)

<=> \(\orbr{\begin{cases}x=\frac{1}{4}\\x=2\end{cases}}\)

b) \(\sqrt{x^2+x-2}+x^2=\sqrt{2\left(x-1\right)}+1\)

<=> \(\sqrt{x^2+x-2}=\sqrt{2\left(x-1\right)}+1-x^2\)

<=> \(\left(\sqrt{x^2+x-2}\right)^2=\left[\sqrt{2\left(x-1\right)}+1-x^2\right]^2\)

<=> \(x^2+x-2=x^4-2\sqrt{2}.x^2.\sqrt{x-1}-2x^2+2x+2\sqrt{2}.\sqrt{x-2}-1\)

<=> \(x^4-2\sqrt{2}.x^2.\sqrt{x-1}-2x^2+2x+2\sqrt{2}.\sqrt{x-1}-1=x^2+x-2\)

<=> \(-2\sqrt{2}.x^2.\sqrt{x-1}+2\sqrt{2}.\sqrt{x-1}-1=-x^4+3x^2-x-2\)

<=> \(-2\sqrt{2}.x^2.\sqrt{x-1}+2\sqrt{2}.\sqrt{x-1}=-x^4+3x^2-x-1\)

<=> \(-2\sqrt{2}.\sqrt{x-1}.\left(x^2+1\right)=-x^4+3x^2-x-1\)

<=> \(\left[-2\sqrt{2}.\sqrt{x-1}\left(x^2+1\right)\right]^2=\left(-x^4+3x^2-x-1\right)^2\)

<=> \(8x^5-8x^4-16x^3+16x^2+8x-8=x^8-6x^6+2x^5+11x^4-6x^3-5x^2+2x+1\)

<=> x = 1

d) mình làm tắt cho nhanh 

d) \(\left(\sqrt{4+x}-1\right)\left(\sqrt{1-x}+1\right)=2x\)

<=> \(\sqrt{4+x}.\sqrt{x-1}+\sqrt{4+x}-\sqrt{x-1}-1=2x\)

<=> \(\sqrt{4+x}.\sqrt{1-x}+\sqrt{4+x}-\sqrt{1-x}=2x+1\)

<=> \(\sqrt{4+x}.\sqrt{x-1}+\sqrt{4+x}=2x+1+\sqrt{x-1}\)

<=> \(\left(\sqrt{4+x}.\sqrt{1-x}+\sqrt{4+x}\right)^2=\left(2x+1+\sqrt{1-x}\right)^2\)

<=> \(2\sqrt{-x+1}.\left(x+4\right)=5x^2+4x\sqrt{-x+1}+5x+2\sqrt{-x+1}-6\)

<=> \(\frac{2\sqrt{-x+1}.\left(x+4\right)}{2\left(x+4\right)}=\frac{5x^2}{2\left(x+4\right)}+\frac{4x\sqrt{-x+1}}{2\left(x+4\right)}+\frac{5x}{2\left(x+4\right)}+\frac{2\sqrt{-2x+1}}{2\left(x+4\right)}-\frac{6}{2\left(x+4\right)}\)

<=> \(\sqrt{-x+1}=\frac{5x^2+4x\sqrt{-x+1}+5x+2\sqrt{-x+1}-6}{2\left(4+x\right)}\)

<=> \(2\sqrt{-x+1}.\left(4+x\right)=5x^2+4x\sqrt{-x+1}+5x+2\sqrt{-x+1}-6\)

<=> \(-2x\sqrt{-x+1}+6\sqrt{-x+1}=5x^2+5x-6\)

<=> \(\frac{2\sqrt{-x+1}.\left(-x+3\right)}{2\left(-x+3\right)}=\frac{5x^2}{2\left(-x+3\right)}+\frac{5x}{2\left(-x+3\right)}-\frac{6}{2\left(-x+3\right)}\)

<=> \(\sqrt{-x+1}=\frac{5x^2+5x-6}{2\left(x-3\right)}\)

<=> \(\left(\sqrt{-x+1}\right)^2=\left[\frac{5x^2+5x-6}{2\left(3-x\right)}\right]^2\)

<=> \(-x+1=\frac{25x^4+50x^3-35x^2-60x+36}{36-24+4x}\)

<=> \(\hept{\begin{cases}x=0\\x=\frac{21}{25}\\x=-3\end{cases}}\)=> x = 21/25 (lý do dùng ngoặc nhọn như lý do mình ghi ở trên =))) )

=> x = 21/25

27 tháng 4 2020

f) ĐKXĐ: \(x\ge-\frac{3}{2}\)

Khi đó VT > 0 nên \(VT>0\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le-3\left(L\right)\end{matrix}\right.\)

Lũy thừa 6 cả 2 vế lên PT tương đương:

\( \left( x-3 \right) \left( {x}^{11}+9\,{x}^{10}+6\,{x}^{9}-142\,{x}^{ 8}-231\,{x}^{7}+1113\,{x}^{6}+2080\,{x}^{5}-4604\,{x}^{4}-6908\,{x}^{3 }+13222\,{x}^{2}+10983\,x-15327 \right) =0\)

Cái ngoặc to vô nghiệm vì nó tương đương:

\(\left( x-2 \right) ^{11}+31\, \left( x-2 \right) ^{10}+406\, \left( x -2 \right) ^{9}+2906\, \left( x-2 \right) ^{8}+12281\, \left( x-2 \right) ^{7}+31031\, \left( x-2 \right) ^{6}+46656\, \left( x-2 \right) ^{5}+46648\, \left( x-2 \right) ^{4}+46452\, \left( x-2 \right) ^{3}+44590\, \left( x-2 \right) ^{2}+36015\,x-55223 = 0\)(vô nghiệm với mọi \(x\ge2\))

Vậy x = 3.

PS: Nghiệm đẹp thế này chắc có cách AM-Gm độc đáo nhưng mình chưa nghĩ ra

25 tháng 4 2020

@Akai Haruma, @Nguyễn Việt Lâm

giúp em vs ạ! Cần gấp ạ

em cảm ơn nhiều!