![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) \(5^x+5^{x+2}=650\)
\(\Rightarrow5^x.1+5^x.5^2=650\)
\(\Rightarrow5^x.\left(1+5^2\right)=650\)
\(\Rightarrow5^x.26=650\)
\(\Rightarrow5^x=650:26\)
\(\Rightarrow5^x=25\)
\(\Rightarrow5^x=5^2\)
\(\Rightarrow x=2\)
Vậy \(x=2.\)
Mình chỉ làm câu 1) thôi nhé.
Chúc bạn học tốt!
![](https://rs.olm.vn/images/avt/0.png?1311)
1.
\(-3x^5y^4+3x^2y^3-7x^2y^3+5x^5y^4\)
\(=(-3x^5y^4+5x^5y^4)+(3x^2y^3-7x^2y^3)\)
\(=2x^5y^4-4x^2y^3\)
2.
\(\frac{1}{2}x^4y-\frac{3}{2}x^3y^4+\frac{5}{3}x^4y-x^3y^4\)
\(=(\frac{1}{2}x^4y+\frac{5}{3}x^4y)-(\frac{3}{2}x^3y^4+x^3y^4)\)
\(=\frac{13}{6}x^4y-\frac{5}{2}x^3y^4\)
3.
\(5x-7xy^2+3x-\frac{1}{2}xy^2\)
\(=(5x+3x)-(7xy^2+\frac{1}{2}xy^2)\)
\(=8x-\frac{15}{2}xy^2\)
4.
\(\frac{-1}{5}x^4y^3+\frac{3}{4}x^2y-\frac{1}{2}x^2y+x^4y^3\)
\(=(\frac{-1}{5}x^4y^3+x^4y^3)+(\frac{3}{4}x^2y-\frac{1}{2}x^2y)\)
\(=\frac{4}{5}x^4y^3+\frac{1}{4}x^2y\)
5.
\(\frac{7}{4}x^5y^7-\frac{3}{2}x^2y^6+\frac{1}{5}x^5y^7+\frac{2}{3}x^2y^6\)
\(=(\frac{7}{4}x^5y^7+\frac{1}{5}x^5y^7)+(-\frac{3}{2}x^2y^6+\frac{2}{3}x^2y^6)\)
\(=\frac{39}{20}x^5y^7-\frac{5}{6}x^2y^6\)
6.
\(\frac{1}{3}x^2y^5(-\frac{3}{5}x^3y)+x^5y^6=(\frac{1}{3}.\frac{-3}{5})(x^2.x^3)(y^5.y)+x^5y^6\)
\(=\frac{-1}{5}x^5y^6+x^5y^6=\frac{4}{5}x^5y^6\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Nhân phân phối là ra thôi
a)
\(VT=\left(x-1\right)\left(x+1\right)=x.x+x.1-1.x+\left(-1\right).1\)
\(=\left(x^2-1\right)+\left(x-x\right)=x^2-1+0=x^2-1=VP\Rightarrow dccm\)
c) thay vì c/m A=B ta chứng Minh B=A
\(VP=\left(x+1\right)\left(x^2-x+1\right)=\left(x^3-x^2+x\right)+\left(x^2-x+1\right)\)
\(=\left(x^3+1\right)+\left(-x^2+x^2\right)+\left(x-x\right)=x^3+1+0+0=x^3+1=VT\Rightarrow VT=VP\Rightarrow dpcm\)\(=x^3+1+0+0=x^3+1=VT\Rightarrow VT=VP\Rightarrow dpcm\)
![](https://rs.olm.vn/images/avt/0.png?1311)
B.1:
a) Với x = 1/2, y = -1/3, A= \(3\left(\frac{1}{2}\right)^3\left(-\frac{1}{3}\right)+6\left(\frac{1}{2}\right)^2\left(-\frac{1}{3}\right)^2+3.\frac{1}{2}.\left(-\frac{1}{3}\right)^3\)=\(\frac{-1}{8}+\frac{1}{6}+\frac{-1}{18}\)=\(\frac{-1}{72}\)
b)Với x = -1, y = 3, B=
\(\left(-1\right)^2.3^2+\left(-1\right).3+\left(-1\right)^3+3^3\)\(=9+\left(-3\right)+\left(-1\right)+27\)
\(=32\)
B.2:
\(P\left(-1\right)=\left(-1\right)^4+2.\left(-1\right)^2+1\)\(=1+2+1=4\)
\(P\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^4+2.\left(\frac{1}{2}\right)^2+1\)\(=\frac{1}{16}+\frac{1}{2}+1\)\(=\frac{25}{16}\)
\(Q\left(-2\right)=\left(-2\right)^4+4\left(-2\right)^3+2\left(-2\right)^2-4\left(-2\right)+1\)\(=16+\left(-32\right)+8-\left(-8\right)+1=1\)
\(Q\left(1\right)=1^4+4.1^3+2.1^2=1+4+2=7\)
Chúc cậu học tốt
![](https://rs.olm.vn/images/avt/0.png?1311)
1, \(\left(xy\right)^2-\frac{1}{2}x^2y^2+3xy^2.\left(-\frac{1}{3}x\right)\)
\(=x^2y^2-\frac{1}{2}x^2y^2-x^2y^2\)
\(=-\frac{1}{2}x^2y^2\)
2, \(4.\left(-\frac{1}{2}x\right)^2-\frac{3}{2}x.\left(-x\right)+\frac{1}{3}x^2\)
\(=x^2+\frac{3}{2}x^2+\frac{1}{3}x^2\)
\(=\frac{17}{6}x^2\)
3, \(-4.\left(2x\right)^2y^3+\frac{1}{2}xy.\left(-2xy^2\right)+\frac{1}{4}x^2y^3\)
\(=-16x^2y^3-x^2y^3+\frac{1}{4}x^2y^3\)
\(=-\frac{67}{4}x^2y^3\)
4, \(\frac{1}{3}x^4y-\frac{5}{3}x^3.\left(\frac{5}{2}xy\right)+\frac{3}{4}x^4y\)
\(=\frac{1}{3}x^4y-\frac{25}{6}x^4y+\frac{3}{5}x^4y\)
\(=-\frac{97}{30}x^4y\)
5, \(\left(-2x^3y^4\right)^2-5x^2y.\left(\frac{3}{4}x^4y^7\right)-\frac{2}{3}x^6y^8\)
\(=4x^6y^8-\frac{15}{4}x^6y^8-\frac{2}{3}x^6y^8\)
\(=-\frac{5}{12}x^6y^8\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : x2y2 + x4y4 + x6y6 = x2y2(1 + x2y2 + x4y4)
Thay x = 1 ; y = -1 thì x2y2 + x4y4 + x6y6 = x2y2(1 + x2y2 + x4y4)
= 1.1.(1 + 1.1 + 1.1)
= 1 + 1 + 1 = 3
thiếu = 4
x^2 + 1/x^2 - 2 + y^2+1/y^2 - 2 = 0
=( x^2 -2*x*1/x*1/x^2 ) + ( y^2-2*y*1/y+1/y^2)=0
= ( x-1/x)^2 + ( y-1/y)^2 =0
Ta có
(x-1/x) = 0 và y-1/y = 0
Suy ra x = +1 -1
y = +1,-1
giúp mk với các bạn
mai mk phải nộp rùi