\(x^{11}+3x^{10}+x^9+3x^8+x^7-3x^6-17x^5+3x^4+x^3+3x^2+x+3=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2017

\(x^{11}+3x^{10}+x^9+3x^8+x^7-3x^6-17x^5+3x^4+x^3+3x^2+x+3=0\)

\(\Leftrightarrow\left(x^{11}+2x^{10}+4x^9+6x^8+9x^7+6x^6+4x^5+2x^4+x^3\right)+\left(x^{10}+2x^9+4x^8+6x^7+9x^6+6x^5+4x^4+2x^3+x^2\right)-\left(5x^9+10x^8+20x^7+30x^6+45x^5+30x^4+20x^3+10x^2+5x\right)+\left(3x^8+6x^7+12x^6+18x^5+27x^4+18x^3+12x^2+6x+3\right)=0\)

\(\Leftrightarrow x^3\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)+x^2\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)-5\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)+3\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x^3+x^2-5x+3\right)\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)\left(x+3\right)\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x+3\right)\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)=0\)

Dễ thấy: \(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1>0\forall x\)

Nên \(\left[{}\begin{matrix}\left(x-1\right)^2=0\\x+3=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

16 tháng 6 2017

đex ~ vừa thấy trên face lướt qua luôn

20 tháng 11 2017

(1)Phương trình đã cho tương đương với:
3x27x+33x25x1=x22x23x+43x2−7x+3−3x2−5x−1=x2−2−x2−3x+4
2x+43x27x+3+3x25x1=3x6x22+x23x+4⇔−2x+43x2−7x+3+3x2−5x−1=3x−6x2−2+x2−3x+4

(x2)(3x22+x23x+4+23x27x+3+3x25x1)=0⇔(x−2)(3x2−2+x2−3x+4+23x2−7x+3+3x2−5x−1)=0
Đến đây thì bạn có thể suy ra nghiệm của phương trình sau cùng là x=2x=2. Kiểm tra lại điều kiện ban đầu để kết luận nghiệm của phương trình đã cho.
(2)đk:23x723≤x≤7

Phương trình đã cho tương đương với:

3x183x2+4+x67x1+(x6)(3x2+x2)3x−183x−2+4+x−67−x−1+(x−6)(3x2+x−2)=0

(x6)(33x2+4+17x1+3x2+x2)⇔(x−6)(33x−2+4+17−x−1+3x2+x−2)=0

x=6⇔x=6

vì với 23x723≤x≤7

thì: (33x2+4+17x1+3x2+x2)(33x−2+4+17−x−1+3x2+x−2)>0

4 tháng 11 2018

a) \(x^2+8=3\sqrt{x^3+8}\)

\(\left(x^2+8\right)^2=\left(3\sqrt{x^2+8}\right)^2\)

\(x^4+16x^2+64=9x^2+72\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

AH
Akai Haruma
Giáo viên
23 tháng 11 2018

Câu a:

ĐKXĐ:...........

\(\sqrt{x^2-x+9}=2x+1\)

\(\Rightarrow \left\{\begin{matrix} 2x+1\geq 0\\ x^2-x+9=(2x+1)^2=4x^2+4x+1\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ 3x^2+5x-8=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ 3x(x-1)+8(x-1)=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ (x-1)(3x+8)=0\end{matrix}\right.\Rightarrow x=1\)

Vậy.....

AH
Akai Haruma
Giáo viên
23 tháng 11 2018

Câu b:

ĐKXĐ:.........

Ta có: \(\sqrt{5x+7}-\sqrt{x+3}=\sqrt{3x+1}\)

\(\Rightarrow (\sqrt{5x+7}-\sqrt{x+3})^2=3x+1\)

\(\Leftrightarrow 5x+7+x+3-2\sqrt{(5x+7)(x+3)}=3x+1\)

\(\Leftrightarrow 3(x+3)=2\sqrt{(5x+7)(x+3)}\)

\(\Leftrightarrow \sqrt{x+3}(3\sqrt{x+3}-2\sqrt{5x+7})=0\)

\(x\geq -\frac{7}{5}\Rightarrow \sqrt{x+3}>0\). Do đó:

\(3\sqrt{x+3}-2\sqrt{5x+7}=0\)

\(\Rightarrow 9(x+3)=4(5x+7)\)

\(\Rightarrow 11x=-1\Rightarrow x=\frac{-1}{11}\) (thỏa mãn)

Vậy..........

28 tháng 11 2019

Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen

help me, pleaseee

Cần gấp lắm ạ!