![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{48}{x+4}+\frac{48}{x-4}=5\)
\(\Leftrightarrow\frac{48\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}+\frac{48\left(x+4\right)}{\left(x+4\right)\left(x-4\right)}=\frac{5\left(x+4\right)\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}\)
\(\Rightarrow48\left(x-4\right)+48\left(x+4\right)=5\left(x-4\right)\left(x+4\right)\)
\(\Leftrightarrow48x-192+48x+192-5\left(x+4\right)\left(x-4\right)=0\)
\(\Leftrightarrow96x-5\left(x^2-4\right)=0\)
\(\Leftrightarrow96x-5x^2+20=0\)
Giải phương trình bậc hai tìm x
![](https://rs.olm.vn/images/avt/0.png?1311)
đây dùng bảng xét dấu nhưng mình không biết vẽ , đành nói cụ thể :3
Với x<−2x<−2, khi đó x−1<0;x+2<0;x−3<0x−1<0;x+2<0;x−3<0, suy ra|x−1|=1−x,|x+2|=−x−2;|x−3|=3−x⇒1−x+−x−2+3−x=14⇔x=−4|x−1|=1−x,|x+2|=−x−2;|x−3|=3−x⇒1−x+−x−2+3−x=14⇔x=−4(thỏa)
Với −2≤x≤1−2≤x≤1, khi đó x−1≤0;x+2≥0;x−3<0x−1≤0;x+2≥0;x−3<0, suy ra|x−1|=1−x;|x+2|=x+2;|x−3|=3−x⇒1−x+x+2+3−x=14⇔x=−8|x−1|=1−x;|x+2|=x+2;|x−3|=3−x⇒1−x+x+2+3−x=14⇔x=−8
(loại)
,Tương tự như trên Với 1<x≤31<x≤3, khi đó x−1>0;x+2>0;x−3≤0x−1>0;x+2>0;x−3≤0, suy ra x−1+x+2+3−x=14⇔x=9x−1+x+2+3−x=14⇔x=9
(loại).
Với x>3⇒x−1+x+2+x−3=14⇔x=163x>3⇒x−1+x+2+x−3=14⇔x=163.
Vậy phương trình có 2 nghiệm x=−4;x=163x=−4;x=163 (thỏa)
Câu 2: ý tưởng giống câu 1 , ta có :
|2x−5|+|2x2−7x+5|=0⇔|2x−5|+|(2x−5)(x−1)|=0|2x−5|+|2x2−7x+5|=0⇔|2x−5|+|(2x−5)(x−1)|=0
Với x<1x<1, suy ra 2x−5<0⇒|2x−5|=5−2x;|(2x−5)(x−1)|=(2x−5)(x−1)2x−5<0⇒|2x−5|=5−2x;|(2x−5)(x−1)|=(2x−5)(x−1) (do x−1<0;2x−5<0x−1<0;2x−5<0 nên tích nó dương).
⇒5−2x+(2x−5)(x−1)=0⇔(2x−5)(x−2)=0⇒5−2x+(2x−5)(x−1)=0⇔(2x−5)(x−2)=0 (loại do không có nghiệm thỏa).
Với 1≤x≤521≤x≤52, suy ra |2x−5|=5−2x;|(2x−5)(x−1)|=(x−1)(5−2x)|2x−5|=5−2x;|(2x−5)(x−1)|=(x−1)(5−2x).
⇒5−2x+(x−1)(5−2x)=0⇔x=52⇒5−2x+(x−1)(5−2x)=0⇔x=52, tương tự vói x>52x>52.
Kết luận, phương trình có 1 nghiệm x=52x=52.
Câu 2 cũng có thể làm do 2 trị tuyệt đối luôn ⩾0⩾0, nên dấu bằng khi và chỉ khi |2x−5|=0|2x−5|=0 và |2x2−7x+5|=0|2x2−7x+5|=0 hay x=52x=52
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^4+2x^3-2x^2+2x-3=0\)
\(\left(x^4-1\right)+\left(2x^3-2x^2\right)+\left(2x-2\right)=0\)
\(\left(x-1\right)\left(x+1\right)\left(x^2+1\right)+2x^2\left(x-1\right)+2\left(x-1\right)=0\)
\(\left(x-1\right)\left[\left(x+1\right)\left(x^2+1\right)+2x^2+2\right]=0\)
\(\left(x-1\right)\left(x^3+x+x^2+1+2x^2+2\right)=0\)
\(\left(x-1\right)\left(x^3+3x^2+x+3\right)\)
\(\left(x-1\right)=0or\left(x^3+3x^2+x+3\right)=0\)
- \(x-1=0\Leftrightarrow x=1\)
- \(x^3+3x^2+x+3=0\Leftrightarrow x\left(x^2+1\right)+3\left(x^2+1\right)=0\Leftrightarrow\left(x+3\right)\left(x^2+1\right)=0\Leftrightarrow x+3=0\left(x^2+1>0\right)\Leftrightarrow x=-3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Leftrightarrow\frac{3x}{120}+\frac{4x}{120}+\frac{240}{120}=\frac{1080}{120}\)
\(\Leftrightarrow\frac{3x+4x+240}{120}=\frac{1080}{120}\)
\(\Leftrightarrow7x+240=1080\)
\(\Leftrightarrow7x=840\)
\(\Leftrightarrow x=120\)
Vậy phương trình có nghiệm là x = 120
![](https://rs.olm.vn/images/avt/0.png?1311)
1) \(2\left(x+2\right)-\left(3x+1\right)\left(x+2\right)=0\)
\(\left(x+2\right)\left(2-3x-1\right)=0\)
\(\left(x+2\right)\left(1-3x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\1-3x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{1}{3}\end{cases}}}\)
2) \(3x\left(x-3\right)-\left(2x-6\right)=0\)
\(3x\left(x-3\right)-2\left(x-3\right)=0\)
\(\left(x-3\right)\left(3x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\3x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{2}{3}\end{cases}}}\)
3) \(\left(2x-1\right)^2=\left(3x-5\right)^2\)
\(\left(2x-1\right)^2-\left(3x-5\right)^2=0\)
\(\left(2x-1-3x+5\right)\left(2x-1+3x-5\right)=0\)
\(\left(4-x\right)\left(5x-6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4-x=0\\5x-6=0\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\x=\frac{6}{5}\end{cases}}}\)
4) \(\left(4x+3\right)\left(x-1\right)=x^2-1\)
\(\left(4x+3\right)\left(x-1\right)=\left(x+1\right)\left(x-1\right)\)
\(\left(4x+3\right)\left(x-1\right)-\left(x+1\right)\left(x-1\right)=0\)
\(\left(x-1\right)\left(4x+3-x-1\right)=0\)
\(\left(x-1\right)\left(3x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\3x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{-2}{3}\end{cases}}}\)
5) \(6-4x-\left(2x-3\right)\left(x-3\right)=0\)
\(-2\left(2x-3\right)-\left(2x-3\right)\left(x-3\right)=0\)
\(\left(2x-3\right)\left(-2-x+3\right)=0\)
\(\left(2x-3\right)\left(1-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-3=0\\1-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=1\end{cases}}}\)
6) \(2x^2-5x-7=0\)
\(2x^2+2x-7x-7=0\)
\(2x\left(x+1\right)-7\left(x+1\right)=0\)
\(\left(x+1\right)\left(2x-7\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\2x-7=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=\frac{7}{2}\end{cases}}}\)
7) \(x^2-x-12=0\)
\(x^2+3x-4x-12=0\)
\(x\left(x+3\right)-4\left(x+3\right)\)
\(\left(x+3\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+3=0\\x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-3\\x=4\end{cases}}}\)
8) \(3x^2+14x-5=0\)
\(3x^2+15x-x-5=0\)
\(3x\left(x+5\right)-\left(x+5\right)=0\)
\(\left(x+5\right)\left(3x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+5=0\\3x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-5\\x=\frac{1}{3}\end{cases}}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
đề là gì
a)\(\left(3x-2\right)\left(x+6\right)\left(x^2+5\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}3x-2=0\\x+6=0\\x^2+5=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x=2\\x=-6\\x^2=-5\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{2}{3}\\x=-6\\x\in\varnothing\end{cases}}}\)
vậy x=2/3 hoặc x=-6
a, (3x-2) (x+6) (x^2 +5) = 0
<=> 3x - 2 = 0 hoặc x + 6 = 0 hoặc x2 + 5 = 0 (loại vì x2 \(\ge\)0 => x2 + 5 > 0)
<=> x = 2/3 hoặc x = -6
b, (2x+5)^2 = (3x-1)^2
<=> (2x + 5)2 - (3x - 1)2 = 0
<=> (2x + 5 - 3x + 1)(2x + 5 + 3x - 1) = 0
\(\Leftrightarrow\orbr{\begin{cases}2x-3x+6=0\\2x+3x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}-x=-6\\5x=4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=6\\x=\frac{4}{5}\end{cases}}}\)
c, 4x2 (x-1) - x+1 = 0
<=> 4x2(x - 1) - (x - 1) = 0
<=> (x - 1)(4x2 - 1) = 0
<=> (x - 1)(2x - 1)(2x + 1) = 0
vậy x - 1 = 0 hoặc 2x - 1 = 0 hoặc 2x + 1 = 0
hay x = 1 hoặc x = 1/2 hoặc x = -1/2
![](https://rs.olm.vn/images/avt/0.png?1311)
\(b,\left(x-1\right)^2-1+x^2=\left(1-x\right)\left(x+3\right)\)
\(x^2-2x+1-1+x^2=x+3-x^2-3x\)
\(2x^2-2x=x+3-x^2-3x\)
\(2x^2-2x=-2x+3-x^2\)
\(2x^2=3-x^2\)
\(2x^2+x^2=3\)
\(3x^2=3\Leftrightarrow x^2=1\Leftrightarrow x=\pm\sqrt{1}\)
tớ n g u nên cần tg suy nghĩ thêm :v
câu a tìm ra r nè , vất vả :v ( kiên trì lắm đấy )
\(a,\left(9x^2-4\right)\left(x+1\right)=\left(3x+2\right)\left(x^2+1\right)\)
\(9x^3+9x^2-4x-4-3x^2-3x-2x^2-2=0\)
\(6x^3+7x^2-7x-6=0\)
\(\left(6x^2+13x+6\right)\left(x-1\right)=0\)
\(Th1:6x^2+9x+4x+6=0\)
\(\Leftrightarrow\left[3x\left(2x+3\right)+2\left(2x+3\right)\right]=0\)
\(\Leftrightarrow\left(2x+3\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+3=0\\3x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=-3\\3x=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=-\frac{2}{3}\end{cases}}}\)
\(Th2:x-1=0\Leftrightarrow x=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1,\(\left(x-3\right)^3-5\left(x-2\right)+5=0\)
\(\Rightarrow\left(x-3\right)^3-5\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right)\left[\left(x-3\right)^2-5\right]=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\\left(x-3\right)^2-5=0\end{cases}}\)
\(\Rightarrow x=3\) hoặc \(x=\sqrt{5}+3\) hoặc \(x=-\sqrt{5}+3\)
Vậy........