
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a/ ĐKXĐ: \(2\le x\le10\)
\(\Leftrightarrow\sqrt{x-2}+\sqrt{10-x}-x^2+12x-20-20=0\)
Đặt \(\sqrt{x-2}+\sqrt{10-x}=a>0\)
\(\Rightarrow a^2=8+2\sqrt{-x^2+12x-20}\Rightarrow-x^2+12x-20=\frac{\left(a^2-8\right)^2}{4}\)
Phương trình trở thành:
\(a+\frac{\left(a^2-8\right)^2}{4}-20=0\Leftrightarrow a^4-16a^2+4a-16=0\)
\(\Leftrightarrow a^2\left(a-4\right)\left(a+4\right)+4\left(a-4\right)=0\)
\(\Leftrightarrow\left(a-4\right)\left(a^3+4a^2+4\right)=0\)
\(\Leftrightarrow a=4\) (do \(a^3+4a^2+4>0\) \(\) \(\forall a>0\))
\(\Leftrightarrow\sqrt{x-2}+\sqrt{10-x}=4\)
Mà \(\sqrt{x-2}+\sqrt{10-x}\le\sqrt{2\left(x-2+10-x\right)}=4\)
Dấu "=" xảy ra khi và chỉ khi \(x-2=10-x\Leftrightarrow x=6\)
b/ ĐKXĐ:...
Ta có:
\(VT=1.\sqrt{x^2+x-1}+1.\sqrt{x-x^2+1}\le\frac{1+x^2+x-1}{2}+\frac{1+x-x^2+1}{2}=x+1\)
\(\Rightarrow x^2-x+2\le x+1\)
\(\Leftrightarrow x^2-2x+1\le0\)
\(\Leftrightarrow\left(x-1\right)^2\le0\Rightarrow x=1\)
Vậy pt có nghiệm duy nhất \(x=1\)

a) \(\sqrt{9-12x+4x^2}=4\Leftrightarrow\sqrt{\left(2x\right)^2-2.2x.3+9}=4\Leftrightarrow\sqrt{\left(2x-3\right)^2}=4\left(1\right)\)Nếu \(x< \dfrac{3}{2}\)
\(\left(1\right)\Leftrightarrow3-2x=4\Leftrightarrow2x=-1\Leftrightarrow x=\dfrac{-1}{2}\)(nhận)
Nếu \(x\ge\dfrac{3}{2}\)
\(\left(1\right)\Leftrightarrow2x-3=4\Leftrightarrow2x=7\Leftrightarrow x=\dfrac{7}{2}\)(nhận)
Vậy S=\(\left\{\dfrac{-1}{2};\dfrac{7}{2}\right\}\)
b) \(\sqrt{x^2-2x+1}+\sqrt{x^2+2x+1}=1\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+1\right)^2}=1\left(1\right)\)Nếu x<-1
\(\left(1\right)\Leftrightarrow1-x+\left[-\left(x+1\right)\right]=1\Leftrightarrow1-x+\left(-x-1\right)=1\Leftrightarrow1-x-x-1=1\Leftrightarrow-2x=1\Leftrightarrow x=\dfrac{-1}{2}\)(loại)
Nếu -1≤x<1
\(\left(1\right)\Leftrightarrow1-x+x+1=1\Leftrightarrow2=1\)(loại)
Nếu x≥1
\(\left(1\right)\Leftrightarrow x-1+x+1=1\Leftrightarrow2x=1\Leftrightarrow x=\dfrac{1}{2}\)(loại)
Vậy S=∅

a/ ĐKXĐ: ...
Đặt \(\sqrt{4-x^2}=a>0\)
\(\frac{x^3}{a}-a^2=0\Leftrightarrow x^3-a^3=0\)
\(\Leftrightarrow x=a\) (\(x>0\))
\(\Leftrightarrow x=\sqrt{4-x^2}\Leftrightarrow x^2=4-x^2\)
\(\Leftrightarrow x^2=2\Rightarrow x=\sqrt{2}\)
b/ Đặt \(\sqrt{x^2+1993}=a>0\Rightarrow a^2-x^2=1993\)
\(x^4+a=a^2-x^2\)
\(\Leftrightarrow x^4-a^2+x^2+a=0\)
\(\Leftrightarrow\left(x^2+a\right)\left(x^2-a+1\right)=0\)
\(\Leftrightarrow x^2+1=a\Leftrightarrow x^2+1=\sqrt{x^2+1993}\)
\(\Leftrightarrow x^4+2x^2+1=x^2+1993\)
\(\Leftrightarrow x^4+x^2-1992=0\)
c/
ĐKXĐ: \(2\le x\le10\)
Ta có \(VT\le\sqrt{2\left(x-2+10-x\right)}=4\)
\(VP=x^2-12x+36+4=\left(x-6\right)^2+4\ge4\)
\(\Rightarrow VT\le VP\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}x-2=10-x\\x-6=0\end{matrix}\right.\) \(\Rightarrow x=6\)


* Điều kiện: \(2\le x\le10\)
* Nhận xét:
VP = x2 -12x + 40 = (x-6)2 + 4 => \(VP\ge4\) . Xảy ra dấu bằng khi và chỉ khi (x-6)2 = 0 => x = 6
VT = \(\sqrt{x-2}+\sqrt{10-x}=1.\sqrt{x-2}+1.\sqrt{10-x}\)
Áp dụng bất đẳng thức Bi-nhi-a Cốp-xki ta có:
VT \(\le\sqrt{\left(1^2+1^2\right).\left(\sqrt{\left(x-2\right)^2}+\sqrt{\left(10-x\right)^2}\right)}=4\)
Xảy ra dấu bằng khi \(\sqrt{x-2}=\sqrt{10-x}\) => x = 6
Như vậy: \(VP\ge4;VT\le4\)
=> PT có nghiệm khi và chỉ khi VP = VT = 4 => x = 6
\(t=\sqrt{x-2}+\sqrt{10-x}\)
\(\Rightarrow t^2=8+2\sqrt{-x^2+12x-20}\)\(\Rightarrow-x^2+12x-20=\left(\frac{t^2}{2}-4\right)^2=\frac{t^4}{4}-4t^2+16\)
\(pt\rightarrow t=-\left(\frac{t^4}{4}-4t^2+16\right)+20\Leftrightarrow\left(t-4\right)\left(t^3+4t^2+4\right)=0\)
\(\Leftrightarrow t=4\text{ }\left(do\text{ }t>0\right)\)
\(\Rightarrow-x^2+12x-20=\left(\frac{t^2}{2}-4\right)^2=16\Leftrightarrow x=6\)

xét vế trái :
\(\sqrt[]{x-2}+\sqrt{10-x}=< \sqrt{2\left(x-2+10-x\right)}=< 4\)
=>vp=<4
=>\(x^2-12x+40=< 4\)
=>\(\left(x-6\right)^2=< 0\)
=> xảy ra dấu = <=>x=6
vậy pt có nghiệm là 6
ĐK:...
Vế Phải = (x2 - 12x + 36) + 4 = (x - 6)2 + 4 > 4 với mọi x
VT2 = \(\left(1.\sqrt{x-2}+1.\sqrt{10-x}\right)^2\le\left(1^2+1^2\right)\left(x-2+10-x\right)=16\)
=> VT < 4
Suy ra VT = VP <=> VT = VP = 4
Dấu "=" xảy ra khi x - 6 = 0 <= > x = 6
Vậy....