\(\sqrt{x-1}+7\sqrt{6-x}=15\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2018

đkxđ \(1\le x\le6\)

đặt \(\sqrt{x-1}=a\left(a\ge0\right);\sqrt{6-x}=b\left(b\ge0\right)\)

ta thấy \(a^2+b^2=5\)

ta suy ra hệ phương trình

\(\left\{{}\begin{matrix}a+7b=15\left(1\right)\\a^2+b^2=5\left(2\right)\end{matrix}\right.\)

rút pt (1) thế pt(2) ta có

\(\left(15-7b\right)^2+b^2=5\)

\(\Leftrightarrow50b^2-210b+220=0\)

\(\Leftrightarrow\left[{}\begin{matrix}b=\dfrac{11}{5}\Rightarrow a=-\dfrac{2}{5}\left(l\right)\\b=2\Rightarrow a=1\left(n\right)\end{matrix}\right.\)

\(\)\(a=1\Rightarrow\sqrt{x-1}=1\Leftrightarrow x=2\left(tm\right)\)

thay x=2 thấy b=2

vậy pt có nghiệm là x=2

AH
Akai Haruma
Giáo viên
8 tháng 6 2018

Lời giải:

ĐKXĐ: \(1\leq x\leq 6\)

Ta có:

\(\sqrt{x-`1}+7\sqrt{6-x}=15\)

\(\Leftrightarrow 7\sqrt{6-x}=15-\sqrt{x-1}\)

\(\Rightarrow 49(6-x)=225+x-1-30\sqrt{x-1}\) (bp hai vế)

\(\Leftrightarrow 50x-30\sqrt{x-1}-70=0\)

\(\Leftrightarrow 5x-3\sqrt{x-1}-7=0\)

\(\Leftrightarrow 5(x-1)-3\sqrt{x-1}-2=0\) Đặt \(\sqrt{x-1}=t(t\geq 0)\)

Khi đó: \(5t^2-3t-2=0\Leftrightarrow (t-1)(5t+2)=0\Rightarrow t=1\)

vì $t\geq 0$

Do đó: \(x=t^2+1=2\). Thử lại thấy thỏa mãn

7 tháng 6 2018

bài này ta dùng phương pháp liên hợp 

từ phương trình trên ta có 

\(\sqrt{x-1}+7\sqrt{6-x}-15=0\)

<=>\(\sqrt{x-1}-1+7(\sqrt{6-x}-2)=0 \)

<=>\((x-2)/(\sqrt{x-1}+1)+7(2-x)/(\sqrt{6-x}+2))=0 \)

<=>\((x-2)(1/\sqrt{x-1})-7/(\sqrt{6-x}+2)=0 \)

=>x=2

còn vế còn lại thì từ điều của x thì xét vào vế đó sẽ lớn hơn 0 hoặc bé hơn 0 chứ ko xảy ra dấu =

Vậy S={2}

20 tháng 7 2017

a,    \(\sqrt{5+\sqrt{x-1}}\)=6-x

=>bình phương lên => trục \(\sqrt{x-1}\)với x-6 => có nhân tử chung

c,    đat \(\sqrt{x^2+7x+7}\)=a => pt 3a2+2a-5=0 => giờ thì đơn giản rồi

b, mk k bít lm

NV
11 tháng 1 2019

1/ \(\dfrac{5}{3}\le x\le\dfrac{7}{3}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{3x-5}=a>0\\\sqrt{7-3x}=b>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^2+b^2=2\\17-6x=2b^2+3\\6x-7=2a^2+3\end{matrix}\right.\)

Mặt khác theo BĐT Bunhiacốpxki:

\(a+b=\sqrt{3x-5}+\sqrt{7-3x}\le\sqrt{\left(1+1\right)\left(3x-5+7-3x\right)}=2\)

\(\Rightarrow0< a+b\le2\)

Ta được hệ pt:

\(\left\{{}\begin{matrix}a^2+b^2=2\\\left(2b^2+3\right).a+\left(2a^2+3\right)b=2+8ab\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a+b\right)^2-2ab=2\\2ab^2+3a+2a^2b+3b-8ab-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2ab=\left(a+b\right)^2-2\\2ab\left(a+b\right)+3\left(a+b\right)-8ab-2=0\end{matrix}\right.\)

\(\Rightarrow\left(\left(a+b\right)^2-2\right)\left(a+b\right)+3\left(a+b\right)-4\left(a+b\right)^2+6=0\)

\(\Leftrightarrow\left(a+b\right)^3-4\left(a+b\right)^2+\left(a+b\right)+6=0\)

\(\Rightarrow\left[{}\begin{matrix}a+b=-1< 0\left(l\right)\\a+b=2\\a+b=3>2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow a+b=2\) , dấu "=" xảy ra khi và chỉ khi:

\(3x-5=7-3x\Rightarrow x=2\)

Vậy pt có nghiệm duy nhất \(x=2\)

NV
11 tháng 1 2019

2/ ĐKXĐ: \(x\ne\pm2\)

\(\left(\dfrac{x-1}{x+2}\right)^2+4\left(\dfrac{x+1}{x-2}\right)^2-\left(\dfrac{15}{x^2-4}+5\right)=0\)

\(\Leftrightarrow\left(\dfrac{x-1}{x+2}\right)^2+4\left(\dfrac{x+1}{x-2}\right)^2-5.\left(\dfrac{x^2-1}{x^2-4}\right)=0\)

\(\Leftrightarrow\left(\dfrac{x-1}{x+2}\right)^2-\left(\dfrac{x^2-1}{x^2-4}\right)-4\left[\left(\dfrac{x^2-1}{x^2-4}\right)-\left(\dfrac{x+1}{x-2}\right)^2\right]=0\)

\(\Leftrightarrow\left(\dfrac{x-1}{x+2}\right)\left(\dfrac{x-1}{x+2}-\dfrac{x+1}{x-2}\right)-4\left(\dfrac{x+1}{x-2}\right)\left(\dfrac{x-1}{x+2}-\dfrac{x+1}{x-2}\right)=0\)

\(\Leftrightarrow\left(\dfrac{x-1}{x+2}-\dfrac{4\left(x+1\right)}{x-2}\right)\left(\dfrac{x-1}{x+2}-\dfrac{x+1}{x-2}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x-1}{x+2}=\dfrac{4\left(x+1\right)}{x-2}\\\dfrac{x-1}{x+2}=\dfrac{x+1}{x-2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+2=4\left(x^2+3x+2\right)\\x^2-3x+2=x^2+3x+2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x^2+15x+6=0\\6x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-5+\sqrt{17}}{2}\\x=\dfrac{-5-\sqrt{17}}{2}\end{matrix}\right.\)

30 tháng 6 2019

c) \(\sqrt{x^2+6}=x-2\sqrt{x^2-1}\)

\(\Leftrightarrow\sqrt{x^2+6}+2\sqrt{x^2-1}=x\)

\(\Leftrightarrow x^2+6+4\left(x^2-1\right)+4\sqrt{\left(x^2+6\right)\left(x^2-1\right)}=x^2\)

\(\Leftrightarrow6+4x^2-4+4\sqrt{\left(x^2+6\right)\left(x^2-1\right)}=0\)

\(\Leftrightarrow4x^2+2+4\sqrt{\left(x^2+6\right)\left(x^2-1\right)}=0\)

\(\Leftrightarrow2x^2+2\sqrt{\left(x^2+6\right)\left(x^2-1\right)}+1=0\)

Dễ thấy \(VT>0\forall x\)

Do đó pt vô nghiệm

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

Lời giải:
a)

ĐK: \(0\leq x\leq 1\)

PT \(\Leftrightarrow \sqrt{x+\sqrt{1-x}}=1-\sqrt{x}\)

\(\Rightarrow x+\sqrt{1-x}=1+x-2\sqrt{x}\) (bình phương 2 vế)

\(\Leftrightarrow \sqrt{1-x}-1+2\sqrt{x}=0\)

\(\Leftrightarrow \frac{-x}{\sqrt{1-x}+1}+2\sqrt{x}=0\)

\(\Leftrightarrow \sqrt{x}(2-\frac{\sqrt{x}}{\sqrt{1-x}+1})=0\)

Ta thấy \(\sqrt{1-x}+1\geq 1\Rightarrow \frac{\sqrt{x}}{\sqrt{1-x}+1}\leq \sqrt{x}\leq 1< 2\) với mọi $0\leq x\leq 1$

\(\Rightarrow 2-\frac{\sqrt{x}}{\sqrt{1-x}+1}>0\Rightarrow 2-\frac{\sqrt{x}}{\sqrt{1-x}+1}\neq 0\)

Do đó $\sqrt{x}=0\Leftrightarrow x=0$ là nghiệm duy nhất

b)

ĐK: \(1 \leq x\leq \frac{1+\sqrt{5}}{2}\) hoặc \(0\geq x\geq \frac{1-\sqrt{5}}{2}\)

PT \(\Rightarrow \left\{\begin{matrix} \sqrt{x}-1\geq 0\\ 1-\sqrt{x^2-x}=x-2\sqrt{x}+1\end{matrix}\right.\) (bình phương 2 vế)

\(\Leftrightarrow \left\{\begin{matrix} x\geq 1(1)\\ x+\sqrt{x^2-x}-2\sqrt{x}=0(2)\end{matrix}\right.\)

(1) kết hợp với ĐKXĐ suy ra \(1\leq x\leq \frac{1+\sqrt{5}}{2}(*)\)

(2) \(\Leftrightarrow \sqrt{x}(\sqrt{x}+\sqrt{x-1}-2)=0\)

Từ $(*)$ suy ra $x\neq 0$. Do đó \(\sqrt{x}+\sqrt{x-1}-2=0\)

\(\Leftrightarrow \sqrt{x-1}=2-\sqrt{x}\)

\(\Rightarrow x-1=4+x-4\sqrt{x}\) (bình phương)

\(\Leftrightarrow 4\sqrt{x}=5\Rightarrow x=\frac{25}{16}\) (thỏa mãn $(*)$)

Vậy......


30 tháng 7 2018

\(x\sqrt{x}-7\sqrt{x}-6=0\)

\(\Leftrightarrow\left(x-7\right)\sqrt{x}-6=0\)

\(\Leftrightarrow\left(\sqrt{x}-3\right)\left(\sqrt{x+1}\right)\left(\sqrt{x+2}\right)=0\)

Loại \(\sqrt{x}=-1;-2\)

\(\sqrt{x}-3=0\Rightarrow\sqrt{x}=3\Leftrightarrow x=9\)

30 tháng 7 2018

buoc2 ra buoc 3 minh ko hieu