\(\sqrt{5x^3-1}+\sqrt[3]{2x-1}+x-4=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2018

c) Ta có:

\(\sqrt{x+\frac{3}{x}}=\frac{x^2+7}{2\left(x+1\right)}\)

\(\Leftrightarrow\sqrt{x+\frac{3}{x}}-2=\frac{x^2+7}{2\left(x+1\right)}-2\)

\(\Leftrightarrow\frac{\sqrt{x^2+3}-2\sqrt{x}}{\sqrt{x}}=\frac{x^2-4x+3}{2\left(x+1\right)}\)

\(\Leftrightarrow\frac{x^2-4x+3}{\sqrt{x^3+3x}+2x}=\frac{x^2-4x+3}{2\left(x+1\right)}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-4x+3=0\\\sqrt{x^3+3x}+2x=2\left(x+1\right)\end{cases}}\)

+) \(x^2-4x+3=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)

+) \(\sqrt{x^3+3x}+2x=2x+2\Rightarrow x=1\)

19 tháng 10 2018

a/ Đặt \(\sqrt{2\left(x^2-x\right)}=a\)

\(\Rightarrow a^4-2a^2=a\)

\(\Leftrightarrow a\left(a+1\right)\left(a^2-a-1\right)=0\)

14 tháng 8 2016
a/ x = 1 b/ x = 3
15 tháng 8 2016

cách làm ????

29 tháng 7 2017

\(\sqrt{x-2}-3\sqrt{x^2-4}=0\left(x\ge2\right)\)

\(\Leftrightarrow\sqrt{x-2}-3\sqrt{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\sqrt{x-2}\left(1-3\sqrt{x+2}\right)=0\)

(+) x - 2 = 0

<=> x = 2 (nhận)

(+) \(1-3\sqrt{x+2}=0\)

\(\Leftrightarrow9\left(x+2\right)=1\)

\(\Leftrightarrow x=\dfrac{1}{9}-2\)

\(\Leftrightarrow x=-\dfrac{17}{9}\) (loại)

29 tháng 7 2017

a) Bình phương lên thôi

Đk: \(x\ge1\)

\(\sqrt{x-1}-\sqrt{5x-1}=\sqrt{3x-2}\)

\(\Rightarrow\left(x-1\right)+\left(5x-1\right)-2\sqrt{\left(x-1\right)\left(5x-1\right)}=3x-2\)

\(\Leftrightarrow2\sqrt{\left(x-1\right)\left(5x-1\right)}=3x\)

\(\Leftrightarrow4\left(x-1\right)\left(5x-1\right)=9x^2\) (vì \(x\ge1\))

\(\Leftrightarrow11x^2-24x+4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{2}{11}\end{matrix}\right.\)

Thử lại thấy ko thỏa mãn

Vậy pt vô nghiệm.

bach nhac lam Xl nha đến đây -----> bí

1 tháng 1 2020

Akai Haruma, No choice teen, Arakawa Whiter, HISINOMA KINIMADO, tth, Nguyễn Việt Lâm, Phạm Hoàng Lê Nguyên, @Nguyễn Thị Ngọc Thơ

Mn giúp em vs ạ! Thanks trước!

6 tháng 10 2020

1) đk: \(x\ge1\)

Ta có: \(\sqrt{x-1}-\sqrt{2x\left(x-1\right)}=0\)

\(\Leftrightarrow\sqrt{x-1}=\sqrt{2x\left(x-1\right)}\)

\(\Leftrightarrow x-1=2x^2-2x\)

\(\Leftrightarrow2x^2-3x+1=0\)

\(\Leftrightarrow\left(2x^2-2x\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\left(ktm\right)\\x=1\left(tm\right)\end{cases}}\)

Vậy x = 1

2) đk: \(x\ge\frac{1}{2}\)

Ta có: \(\sqrt{5x^2}=2x-1\)

\(\Leftrightarrow5x^2=\left(2x-1\right)^2\)

\(\Leftrightarrow5x^2=4x^2-4x+1\)

\(\Leftrightarrow x^2+4x-1=0\)

\(\Leftrightarrow\left(x+2\right)^2-5=0\)

\(\Leftrightarrow\left(x+2-\sqrt{5}\right)\left(x+2+\sqrt{5}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-2+\sqrt{5}\left(ktm\right)\\x=-2-\sqrt{5}\left(ktm\right)\end{cases}}\)

=> PT vô nghiệm

3) đk: \(x\ge-1\)

Ta có: \(\sqrt{x+1}+\sqrt{9x+9}=4\)

\(\Leftrightarrow\sqrt{x+1}+3\sqrt{x+1}=4\)

\(\Leftrightarrow4\sqrt{x+1}=4\)

\(\Leftrightarrow x+1=1\)

\(\Rightarrow x=0\)

6 tháng 10 2020

4) đk: \(x\ge2\)

Ta có: \(\sqrt{x-2}-\sqrt{x\left(x-2\right)}=0\)

\(\Leftrightarrow\sqrt{x-2}=\sqrt{x\left(x-2\right)}\)

\(\Leftrightarrow x-2=x\left(x-2\right)\)

\(\Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\left(ktm\right)\\x=2\left(tm\right)\end{cases}}\)

Vậy x = 2

6) đk: \(x\ge-\frac{7}{5}\)

Ta có: \(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\)

\(\Leftrightarrow\frac{2x-3}{x-1}=2\)

\(\Leftrightarrow2x-3=2x-2\)

\(\Leftrightarrow0x=1\) vô lý

=> PT vô nghiệm

12 tháng 7 2019

GIÚP MK NHA CÁC BN