\(\sqrt{x^2+x+1}\) - x = x2 +3

b, \((\...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2017

đặt \(\sqrt{x^2+x+1}=t\left(t\ge\sqrt{\dfrac{3}{4}}\right)tacó\)

pt \(\Leftrightarrow\)3t=t\(^2\)+2

\(\Leftrightarrow\)\(\left[{}\begin{matrix}t=1\left(tm\right)\\t=2\left(tm\right)\end{matrix}\right.\)

Với t=1 ta có x\(^2\)+x+1=1 \(\Leftrightarrow\)x=0 hoặc x=-1

với t=2 ta có x\(^2\)+x+1 =2 \(\Leftrightarrow\)\(\dfrac{-1\mp\sqrt{5}}{2}\)=x

2 tháng 4 2017

câu 2 tương tự đặt 2x^2+x-2=t(t\(\ge\dfrac{-17}{8}\))

ta có pt \(\Leftrightarrow\)t^2+5t-6=0

\(\Leftrightarrow\)\(\left[{}\begin{matrix}t=1\left(tm\right)\\t=-6\left(loại\right)\end{matrix}\right.\)

với t=1 thì 2x^2+x-2=1 \(\Leftrightarrow\)t=1 hoặc -3/2

8 tháng 4 2018

\(1\))\(x^2+5x+8=3\sqrt{x^3+5x^2+7x+6}\left(1\right)\\ĐK:x\ge-\dfrac{3}{2} \\ \left(1\right)\Leftrightarrow x^2+5x+8=3\sqrt{\left(2x+3\right)\left(x^2+x+2\right)}\left(2\right)\)

Đặt \(b=\sqrt{2x+3};a=\sqrt{x^2+x+2}\)

\(\left(2\right)\Leftrightarrow\left(a-b\right)\left(a-2b\right)=0\Leftrightarrow\left[{}\begin{matrix}a=b\\a=2b\end{matrix}\right.\)\(\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1\pm\sqrt{5}}{2}\\x=\dfrac{7\pm\sqrt{89}}{2}\end{matrix}\right.\)

8 tháng 4 2018

4)\(ĐK:x\ge-\dfrac{1}{3}\)

\(x^2-7x+2+2\sqrt{3x+1}=0\\ \Leftrightarrow x^2-7x+6+2\sqrt{3x+1}-4=0\\ \Leftrightarrow\left(x-1\right)\left(x-6\right)+\dfrac{12\left(x-1\right)}{2\sqrt{3x+1}+4}=0\\ \Leftrightarrow\left(x-1\right)\left(x-6+\dfrac{12}{2\sqrt{3x+1}+4}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x-6+\dfrac{12}{2\sqrt{3x+1}+4}=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left(x-5\right)+\dfrac{6}{\sqrt{3x+1}+2}-1=0\\ \Leftrightarrow\left(x-5\right)+\dfrac{4-\sqrt{3x+1}}{\sqrt{3x+1}+2}=0\\ \Leftrightarrow\left(x-5\right)-\dfrac{3\left(x-5\right)}{\left(\sqrt{3x+1}+2\right)\left(4+\sqrt{3x+1}\right)}=0\\ \Leftrightarrow\left(x-5\right)\left(1-\dfrac{3}{\left(\sqrt{3x+1}+2\right)\left(4+\sqrt{3x+1}\right)}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\\left(1-\dfrac{3}{\left(\sqrt{3x+1}+2\right)\left(4+\sqrt{3x+1}\right)}\right)=0\left(2\right)\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow\left(\sqrt{3x+1}+2\right)\left(4+\sqrt{3x+1}\right)=3\\ \Leftrightarrow3x+1+6\sqrt{3x+1}+8=3\\ \Leftrightarrow x+2\sqrt{3x+1}+2=0\\ \Leftrightarrow2\sqrt{3x+1}=-x-2\ge0\Leftrightarrow x\le-2\)

Vậy pt có 2 nghiệm là x=1 và x=5

11 tháng 1 2017

Bài 1:

Đk:\(x\ge\frac{1}{2}\)

Đặt \(\sqrt{2x-1}=t\Rightarrow2x=t^2+1\)

\(pt\Leftrightarrow\left(t^2+1\right)^2-8\left(t^2+4\right)t=7-22\left(t^2+1\right)\)

\(\Leftrightarrow t^4-8t^3+24t^2-32t+16=0\)

\(\Leftrightarrow\left(t-2\right)^4=0\Leftrightarrow t=2\Leftrightarrow\sqrt{2x-1}=2\)

\(\Leftrightarrow2x-1=4\Leftrightarrow2x=5\Leftrightarrow x=\frac{5}{2}\) (thỏa mãn)

Bài 2:

Cộng 2 vế với \(7x^2+23x+12\) ta được:

\(\left(x+2\right)^3+\left(x+2\right)=\left(7x^2+23x+12\right)+\sqrt[3]{7x^2+23x+12}\)

\(\Leftrightarrow\left(x+2\right)^3=7x^2+23x+12\)

\(\Leftrightarrow x^3+6x^2+12x+8=7x^2+23x+12\)

\(\Leftrightarrow\left(x-4\right)\left(x^2+3x+1\right)=0\)

\(\Leftrightarrow\left[\begin{matrix}x=4\\x=\frac{\sqrt{5}-3}{2}\end{matrix}\right.\) (thỏa mãn)

11 tháng 1 2017

Tks bạn Ng Huy Thắng rất nhiều nha.

5 tháng 3 2019

1) Phương trình đã cho tương đương

\(\Leftrightarrow\left(x-2\right)\left(3\sqrt{x^2+1}-x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\\x=\frac{3}{4}\end{matrix}\right.\)

NV
11 tháng 11 2019

a/ \(x^2-2x-3=-m\)

Đặt \(f\left(x\right)=x^2-2x-3\)

\(-\frac{b}{2a}=1\) ; \(f\left(1\right)=-4\) ; \(f\left(-1\right)=0\) ; \(f\left(3\right)=0\)

\(\Rightarrow\) Để pt có nghiệm trên khoảng đã cho thì \(-4\le-m\le0\Rightarrow0\le m\le4\)

b/ \(-x^2+2mx-m+1=0\)

\(\Delta'=m^2+m-1\ge0\Rightarrow\left[{}\begin{matrix}m\le\frac{-1-\sqrt{5}}{2}\\m\ge\frac{-1+\sqrt{5}}{2}\end{matrix}\right.\)

Để pt có 2 nghiệm đều âm

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2m< 0\\x_1x_2=m-1>0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn

Vậy pt luôn có ít nhất 1 nghiệm \(x\ge0\) với \(\left[{}\begin{matrix}m\le\frac{-1-\sqrt{5}}{2}\\m\ge\frac{-1+\sqrt{5}}{2}\end{matrix}\right.\)

NV
11 tháng 11 2019

c/ \(f\left(x\right)=2x^2-x-1=m\)

Xét hàm \(f\left(x\right)=2x^2-x-1\) trên \(\left[-2;1\right]\)

\(-\frac{b}{2a}=\frac{1}{4}\) ; \(f\left(\frac{1}{4}\right)=-\frac{9}{8}\) ; \(f\left(-2\right)=9\); \(f\left(1\right)=0\)

\(\Rightarrow\) Để pt có 2 nghiệm pb thuộc đoạn đã cho thì \(-\frac{9}{8}< m\le0\)

d/ \(f\left(x\right)=x^2-2x+1=m\)

Xét \(f\left(x\right)\) trên \((0;2]\)

\(-\frac{b}{2a}=1\) ; \(f\left(1\right)=0\) ; \(f\left(0\right)=1\); \(f\left(2\right)=1\)

Để pt có nghiệm duy nhất trên khoảng đã cho \(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\)

e/ ĐKXĐ: \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge-3\\x\le-4\end{matrix}\right.\\x\ge m\end{matrix}\right.\)

\(x^2+4x+3=x-m\)

\(\Leftrightarrow f\left(x\right)=x^2+3x+3=-m\)

Xét hàm \(f\left(x\right)\)

\(-\frac{b}{2a}=-\frac{3}{2}\) ; \(f\left(-\frac{3}{2}\right)=\frac{3}{4}\); \(f\left(-3\right)=3\); \(f\left(-4\right)=7\)

Để pt có 2 nghiệm thỏa mãn \(x\notin\left(-4;-3\right)\) thì \(\left[{}\begin{matrix}\frac{3}{4}< m\le3\\m\ge7\end{matrix}\right.\) (1)

Mặt khác \(x^2+3x+m+3=0\)

Để pt có 2 nghiệm thỏa mãn \(m\le x_1< x_2\) thì:

\(\left\{{}\begin{matrix}f\left(m\right)\ge0\\x_1+x_2>2m\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m^2+4m+3\ge0\\2m< -3\end{matrix}\right.\) \(\Rightarrow m\le-3\) (2)

Từ (1) và (2) suy ra ko tồn tại m thỏa mãn

AH
Akai Haruma
Giáo viên
31 tháng 12 2019

Bài 1. ĐKXĐ:.........

PT \(\Leftrightarrow (-x^2+3x+3)+4\sqrt{-x^2+2x+3}=12\)

Đặt \(\sqrt{-x^2+2x+3}=t(t\geq 0)\) thì PT trở thành:

\(t^2+4t=12\)

\(\Leftrightarrow (t-2)(t+6)=0\Rightarrow \left[\begin{matrix} t=2\\ t=-6\end{matrix}\right.\)

Vì $t\geq 0$ nên $t=2$

$\Rightarrow -x^2+2x+3=t^2=4$

$\Leftrightarrow -x^2+2x-1=0$

$\Leftrightarrow -(x-1)^2=0\Leftrightarrow x=1$ (thỏa mãn)

Vậy......

AH
Akai Haruma
Giáo viên
31 tháng 12 2019

Lời giải:

Ta thấy:

\(|x+2|\geq 0(1), \forall x\in\mathbb{R}\)

\(|x-2|+1\geq 1>0, \forall x\in\mathbb{R}\Rightarrow \frac{2}{|x-2|+1}>0(2)\)

Từ \((1);(2)\Rightarrow |x+2|+\frac{2}{|x-2|+1}>0\) với mọi $x\in\mathbb{R}$

Do đó PT đã cho vô nghiệm.