\(3x^2+5x-4=\left(3x+2\right)\sqrt{x^2-1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2019

a) Điều kiện $x \ge -5$. Đặt $\sqrt{x+5}=a$ thì $x=a^2-5$. Thay vào ta có $$\begin{array}{l} (a^2-5)^2-7(a^2-5)=6a-30 \\ \Leftrightarrow a^4-17a^2-6a+90=0 \Leftrightarrow (a^2+6a+10)(a-3)^2=0 \end{array}$$

Vậy $a=3 \Leftrightarrow \boxed{ x= 4}$.

1 tháng 7 2019

2,\(pt\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)

\(\Leftrightarrow12\cdot\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)

\(\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)\ge0\left(\forall x>-1\right)\)

\(\Rightarrow x=3\)

1 tháng 7 2019

c,\(pt\Leftrightarrow3\left(x-1\right)+\frac{x-1}{4x}+\left(2-\sqrt{3x+1}\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}\right)=0\)

\(\Rightarrow x=1\)

\(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}=0\)

bạn làm nốt pần này nhá

14 tháng 7 2019

ĐK \(x\ge-\frac{2}{3}\)

Pt

<=> \(x^3+2x^2-4x-3+3\left(x+1\right)\left(x+1-\sqrt{3x+2}\right)=0\)

<=> \(\left(x+3\right)\left(x^2-x-1\right)+3\left(x+1\right).\frac{\left(x+1\right)^2-3x-2}{x+1+\sqrt{3x+2}}=0\)

<=> \(\left(x+3\right)\left(x^2-x-1\right)+3\left(x+1\right).\frac{x^2-x-1}{x+1+\sqrt{3x+2}}=0\)

<=> \(\orbr{\begin{cases}x^2-x-1=0\\x+3+\frac{3\left(x+1\right)}{x+1+\sqrt{3x+2}}=0\left(2\right)\end{cases}}\)

Pt (2) vô nghiệm do VT>0 với mọi \(x\ge-\frac{2}{3}\)

=> \(x=\frac{1\pm\sqrt{5}}{2}\)(tmĐKXĐ)

Vậy \(x=\frac{1\pm\sqrt{5}}{2}\)

31 tháng 8 2016

ko biết

31 tháng 8 2016

Bài quá dễ tự làm đi 

k mình mình giải cho