
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(3x^4+2x^3-10x^2+2x+3=0\)
\(\Leftrightarrow3x^4-6x^3+3x^2+8x^3-16x^2+8x+3x^2-6x+3=0\)
\(\Leftrightarrow3x^2\left(x^2-2x+1\right)+8x\left(x^2-2x+1\right)+3\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)\left(3x^2+8x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(3x^2+8x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(3\left(x+\dfrac{4}{3}\right)^2-\dfrac{7}{3}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\3\left(x+\dfrac{4}{3}\right)^2-\dfrac{7}{3}=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-8\pm\sqrt{28}}{6}\end{matrix}\right.\)

Đặt \(a=3-x, b=2-x \)
=>\(a^4+b^4=(a+b)^4
\)và a-b=1
<=>\(a^4+b^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4 \)
và \(a-b=1 \)
<=>\(ab(2a^2+2b^2+3ab)=0 \)
và \(a-b=1 \)
Xét \(a=0\), \(\Leftrightarrow b=\pm1\)
\(b=0\), tương đương \(a=+-1 \)
\(2a^2+2b^2+3ab=0\) =>HPt vo nghiem
vậy ta có nghiệm: \(x=2,x=3\)

Bạn tự phân tích đa thức thành nhân tử nhé!
\(1.\)
\(2x^3+x+3=0\)
\(\Leftrightarrow\) \(\left(x+1\right)\left(2x^2-2x+3\right)=0\) \(\left(1\right)\)
Vì \(2x^2-2x+3=2\left(x^2-x+1\right)+1=2\left(x-\frac{1}{2}\right)^2+\frac{1}{2}>0\) với mọi \(x\in R\)
nên từ \(\left(1\right)\) \(\Rightarrow\) \(x+1=0\) \(\Leftrightarrow\) \(x=-1\)

=> \(\left(2x-5\right)^2-\left(3x+4\right)^2=0\)
=> (2x - 5 + 3x +4).(2x - 5 - 3x - 4) = 0
=> (5x - 1).(-x - 9) = 0
=> 5x - 1 = 0 hoặc - x - 9 = 0
+) 5x - 1 = 0 => x = 1/5
-x - 9 = 0 => x = -9
Vậy..............

a) \(\left(2x-1\right)^4+\left(2x-3\right)^4=0\)
\(\Leftrightarrow\left(2x-1\right)^4+\left(2x-3\right)^4=0^4\)
\(\Leftrightarrow\left(2x-1\right)+\left(2x-3\right)=0\)
\(\Rightarrow\hept{\begin{cases}2x-1=0\\2x-3=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\left(0+1\right):2\\x=\left(0+3\right):2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\x=\frac{3}{2}\end{cases}}\)

https://diendantoanhoc.net/topic/118096-t%C3%ACm-nghi%E1%BB%87m-nguy%C3%AAn-c%E1%BB%A7a-ph%C6%B0%C6%A1ng-tr%C3%ACnh-2x3-2y35xy10/
ta có \(2x^3-2y^3+5xy+1=0\Leftrightarrow2\left(x-y\right)\left|\left(x-y\right)^2+3xy\right|+5xy+1=0\)
đặt x-y=a, xy=b (a,b thuộc Z) ta được
\(2a\left(a^2+3b\right)+5a+1=0\Leftrightarrow2^3+6ab+5b+1=0\Leftrightarrow2a^3+1=-b\left(6a+5\right)\)
\(\Rightarrow\left(2a^3+1\right)⋮\left(6a+5\right)\left(b\inℤ\right)\)
\(\Rightarrow\left(216a^3+108\right)⋮\left(6a+5\right)\Leftrightarrow\left|\left(6a\right)^3+5^3-17\right|⋮\left(6a+5\right)\)
\(\Rightarrow17⋮\left(6a+5\right)\Rightarrow\left(6a+5\right)\in\left\{-17;-1;1;17\right\}\Rightarrow a\in\left\{-1;2\right\}\)
với a=-1 ta có b=-1 => xy=x-y=-1 (loại)
với a=2 ta có: b=-1 => xy=-1 và x-y=2 => x=1; y=-1
thử lại ta thấy x=1; y=-1 là nghiệm nguyên của phương trình
vậy nghiệm của phương trình là (x;y)=(1;-1)

a)
b)
+\(x> 5,5\)
\(=> x - 4,5 > 1\)
\(=>(x -4,5)^4 > 1\)
=> pt vô nghiệm.
+\(x < 4,5
\)
\(=> x - 5,5 < -1\)
\(=>(x - 5,5)^4 > 1\)
=> pt vô nghiệm
+\(4,5 < x < 5,5\)
\(=>(x - 4,5)^4 + (x - 5,5)^4 = (x -4,5)^4 + (5,5 -x)^4 < (x - 4,5 +5,5 -x)^4 = 1\)
vậy chung lại \(x = 4,5\) hoặc \(5,5\) là nghiệm

Áp dụng BĐT giá trị tuyệt đối ta có:
\(\left|2x-1\right|+\left|2x-5\right|=\left|2x-1\right|+\left|5-2x\right|\ge\left|2x-1+5-2x\right|=\left|4\right|=4\)
Dấu "=" xảy ra khi\(\left(2x-1\right)\left(5-2x\right)\ge0\)
TH1:\(2x-1\le0;5-2x\le0\)
\(\Rightarrow x\le\frac{1}{2};x\ge\frac{5}{2}\)(loại)
TH2:\(2x-1\ge0;5-2x\ge0\)
\(\Rightarrow x\ge\frac{1}{2};x\le\frac{5}{2}\)\(\Leftrightarrow\frac{1}{2}\le x\le\frac{5}{2}\) thoả mãn