\(|2x-1|+|2x-5|=4\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2018

Áp dụng BĐT giá trị tuyệt đối ta có:

\(\left|2x-1\right|+\left|2x-5\right|=\left|2x-1\right|+\left|5-2x\right|\ge\left|2x-1+5-2x\right|=\left|4\right|=4\)

Dấu "=" xảy ra khi\(\left(2x-1\right)\left(5-2x\right)\ge0\)

TH1:\(2x-1\le0;5-2x\le0\)

\(\Rightarrow x\le\frac{1}{2};x\ge\frac{5}{2}\)(loại)

TH2:\(2x-1\ge0;5-2x\ge0\)

\(\Rightarrow x\ge\frac{1}{2};x\le\frac{5}{2}\)\(\Leftrightarrow\frac{1}{2}\le x\le\frac{5}{2}\) thoả mãn

7 tháng 7 2017

\(3x^4+2x^3-10x^2+2x+3=0\)

\(\Leftrightarrow3x^4-6x^3+3x^2+8x^3-16x^2+8x+3x^2-6x+3=0\)

\(\Leftrightarrow3x^2\left(x^2-2x+1\right)+8x\left(x^2-2x+1\right)+3\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)\left(3x^2+8x+3\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(3x^2+8x+3\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(3\left(x+\dfrac{4}{3}\right)^2-\dfrac{7}{3}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\3\left(x+\dfrac{4}{3}\right)^2-\dfrac{7}{3}=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-8\pm\sqrt{28}}{6}\end{matrix}\right.\)

29 tháng 7 2017

Đặt \(a=3-x, b=2-x \)
=>\(a^4+b^4=(a+b)^4 \)và a-b=1
<=>\(a^4+b^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4 \)
\(a-b=1 \)
<=>\(ab(2a^2+2b^2+3ab)=0 \)
\(a-b=1 \)
Xét \(a=0\), \(\Leftrightarrow b=\pm1\)
\(b=0\), tương đương \(a=+-1 \)
\(2a^2+2b^2+3ab=0\) =>HPt vo nghiem
vậy ta có nghiệm: \(x=2,x=3\)

11 tháng 4 2016

Bạn tự phân tích đa thức thành nhân tử nhé! 

\(1.\)

\(2x^3+x+3=0\)

\(\Leftrightarrow\)  \(\left(x+1\right)\left(2x^2-2x+3\right)=0\)  \(\left(1\right)\)

Vì  \(2x^2-2x+3=2\left(x^2-x+1\right)+1=2\left(x-\frac{1}{2}\right)^2+\frac{1}{2}>0\)  với mọi  \(x\in R\)

nên từ  \(\left(1\right)\)  \(\Rightarrow\)  \(x+1=0\)  \(\Leftrightarrow\)  \(x=-1\)

11 tháng 4 2016

1)2x^3+x+3=0=>

28 tháng 4 2015

\(x=-9\) 

\(x=\frac{1}{5}\)

28 tháng 4 2015

=> \(\left(2x-5\right)^2-\left(3x+4\right)^2=0\)

=> (2x - 5 + 3x +4).(2x - 5 - 3x - 4) = 0

=> (5x - 1).(-x - 9) = 0

=> 5x - 1 = 0 hoặc - x - 9 = 0

+) 5x - 1 = 0 => x = 1/5

-x - 9 = 0 => x = -9

Vậy..............

3 tháng 3 2019

a) \(\left(2x-1\right)^4+\left(2x-3\right)^4=0\)

\(\Leftrightarrow\left(2x-1\right)^4+\left(2x-3\right)^4=0^4\)

\(\Leftrightarrow\left(2x-1\right)+\left(2x-3\right)=0\)

\(\Rightarrow\hept{\begin{cases}2x-1=0\\2x-3=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\left(0+1\right):2\\x=\left(0+3\right):2\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\x=\frac{3}{2}\end{cases}}\)

3 tháng 3 2019

b) \(a^4-4a^3+12^2-16a+8=0\)

27 tháng 8 2019

Gpt là j

27 tháng 8 2019

giải phương trình

22 tháng 7 2020

https://diendantoanhoc.net/topic/118096-t%C3%ACm-nghi%E1%BB%87m-nguy%C3%AAn-c%E1%BB%A7a-ph%C6%B0%C6%A1ng-tr%C3%ACnh-2x3-2y35xy10/

22 tháng 7 2020

ta có \(2x^3-2y^3+5xy+1=0\Leftrightarrow2\left(x-y\right)\left|\left(x-y\right)^2+3xy\right|+5xy+1=0\)

đặt x-y=a, xy=b (a,b thuộc Z) ta được

\(2a\left(a^2+3b\right)+5a+1=0\Leftrightarrow2^3+6ab+5b+1=0\Leftrightarrow2a^3+1=-b\left(6a+5\right)\)

\(\Rightarrow\left(2a^3+1\right)⋮\left(6a+5\right)\left(b\inℤ\right)\)

\(\Rightarrow\left(216a^3+108\right)⋮\left(6a+5\right)\Leftrightarrow\left|\left(6a\right)^3+5^3-17\right|⋮\left(6a+5\right)\)

\(\Rightarrow17⋮\left(6a+5\right)\Rightarrow\left(6a+5\right)\in\left\{-17;-1;1;17\right\}\Rightarrow a\in\left\{-1;2\right\}\)

với a=-1 ta có b=-1 => xy=x-y=-1 (loại)

với a=2 ta có: b=-1 => xy=-1 và x-y=2 => x=1; y=-1

thử lại ta thấy x=1; y=-1 là nghiệm nguyên của phương trình

vậy nghiệm của phương trình là (x;y)=(1;-1)

29 tháng 7 2017

a)

Hỏi đáp Toán

b)
+\(x> 5,5\)
\(=> x - 4,5 > 1\)
\(=>(x -4,5)^4 > 1\)
=> pt vô nghiệm.
+\(x < 4,5 \)
\(​=> x - 5,5 < -1\)
\(=>(x - 5,5)^4 > 1\)
=> pt vô nghiệm

+\(4,5 < x < 5,5\)
\(=>(x - 4,5)^4 + (x - 5,5)^4 = (x -4,5)^4 + (5,5 -x)^4 < (x - 4,5 +5,5 -x)^4 = 1\)

vậy chung lại \(x = 4,5\) hoặc \(5,5\) là nghiệm

Câu b bạn giải đc cách đặt ẩn phụ kg