Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em thử nhá, ko chắc đâu
ĐK: \(x\ge\frac{3}{4}\)
PT \(\Leftrightarrow4x^2+12x-9-7x\sqrt{4x-3}=0\)
\(\Leftrightarrow4x^2-9x-9-7x\left(\sqrt{4x-3}-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(4x+3\right)-\frac{28x\left(x-3\right)}{\sqrt{4x-3}+3}=0\)
\(\Leftrightarrow\left(x-3\right)\left(4x+3-\frac{28x}{\sqrt{4x-3}+3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\4x+3=\frac{28x}{\sqrt{4x-3}+3}\left(1\right)\end{matrix}\right.\)
Giải (1): \(\Leftrightarrow\left(4x+3\right)\sqrt{4x-3}-16x+9=0\)
\(\Leftrightarrow\left(4x+3\right)\left(\sqrt{4x-3}-1\right)-12\left(x-1\right)=0\)
\(\Leftrightarrow\frac{4\left(x-1\right)\left(4x+3\right)}{\sqrt{4x-3}+1}-12\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[\frac{4\left(4x+3\right)}{\sqrt{4x-3}+1}-12\right]=0\)
Nhận xét rằng cái ngoặc to luôn > 0 với mọi \(x\ge\frac{3}{4}\). Suy ra x = 1
Vậy tập hợp nghiệm của pt: S = {1;3}
Cách 2:
ĐK: \(x\ge\frac{3}{4}\)
\(4x^2+12x-9-7x\sqrt{4x-3}=0\)
\(\Leftrightarrow4x^2-16x+12+7\left[\left(4x-3\right)-x\sqrt{4x-3}\right]=0\)
\(\Leftrightarrow4\left(x-1\right)\left(x-3\right)-7\sqrt{4x-3}\left(x-\sqrt{4x-3}\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(4-\frac{7\sqrt{4x-3}}{x+\sqrt{4x-3}}\right)=0\)
Cái ngoặc to phía sau \(=\frac{4x-3\sqrt{4x-3}}{MS>0}=\frac{16x^2-36x+27}{\left(4x+3\sqrt{4x-3}\right).MS>0}>0\) cái ngoặc to vô nghiệm
Do đó x = 1 (Thỏa mãn) hoặc x = 3 (thỏa mãn)
Ngắn gọn hơn nhỉ:)
b) Đk: \(0\le x\le4\)
Ta có: \(\sqrt{4x+x^2}+\sqrt{4x-x^2}=4x+1\)
<=> \(\left(\sqrt{4x+x^2}+\sqrt{4x-x^2}\right)^2=\left(4x+1\right)^2\)
<=> \(\left|4x+x^2\right|+\left|4x-x^2\right|+2\sqrt{\left(4x+x^2\right)\left(4x-x^2\right)}=16x^2+8x+1\)
<=> \(x^2+4x+4x-x^2+2x\sqrt{\left(4-x\right)\left(4+x\right)}=16x^2+8x+1\)
<=> \(2x\sqrt{16-x^2}=16x^2+8x+1-8x\)
<=> \(\left(2x\sqrt{16-x^2}\right)^2=\left(16x^2+1\right)^2\)
<=> \(4x^2\left|16-x^2\right|=256x^4+32x^2+1\)
<=> \(64x^2-4x^4=256x^4+32x^2+1\)
<=> \(260x^4-32x^2+1=0\)
Đặt x2 = k (k > 0) <=> 260k2 - 32k + 1 = 0
Ta có: \(\Delta=32^2-4.260=-16< 0\)
=> pt vô nghiệm
\(pt\Leftrightarrow\sqrt{\left(x-2\right)^2+1}+\sqrt{\left(x-2\right)^2+4}+\sqrt{\left(x-2\right)^2+5}\ge\sqrt{1}+\sqrt{4}+\sqrt{5}=3+\sqrt{5}\)
Để VT = VP => x = 2
vậy x = 2 là nghiệm của pt
Lời giải:
ĐK: \(x\ge \frac{3}{4}\)
Ta có:
PT \(\Leftrightarrow 2015x^2=(4x-3)+2014x\sqrt{4x-3}\)
\(\Leftrightarrow 2015x^2+(1007x)^2=(4x-3)+(1007x)^2+2.1007x\sqrt{4x-3}\)
\(\Leftrightarrow x^2(2.1007+1+1007^2)=(\sqrt{4x-3}+1007x)^2\)
\(\Leftrightarrow x^2(1007+1)^2=(\sqrt{4x-3}+1007x)^2\)
\(\Leftrightarrow (1008x)^2=(\sqrt{4x-3}+1007x)^2\)
\(\Rightarrow \left[\begin{matrix} \sqrt{4x-3}+1007x=1008x(1)\\ \sqrt{4x-3}+1007x=-1008x(2)\end{matrix}\right.\)
(2) thì hiển nhiên vô lý với mọi $x>0$
Với (1):
\(\Rightarrow \sqrt{4x-3}=x\Rightarrow 4x-3=x^2\Rightarrow x^2-4x+3=0\)
\(\Leftrightarrow (x-1)(x-3)=0\Rightarrow \left[\begin{matrix} x=1\\ x=3\end{matrix}\right.\) (đều thỏa mãn)