![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
giải pt ta có
\(\begin{cases}z=2+\sqrt{5i}\\z=2-\sqrt{5}i\end{cases}\)
===> 2 điểm M,N lần lượt là M( 2, \(\sqrt{5}\)) VÀ N(2,-\(\sqrt{5}\))
MN=\(\sqrt{\left(2-2\right)^2+\left(-\sqrt{5}-\sqrt{5}\right)^2}\)=2\(\sqrt{5}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(ab-ac+bc-c^2=a.\left(b-c\right)+c.\left(b-c\right)=\left(a+c\right)\left(b-c\right)=-1\)
Tích trên là âm nên a+c và b-c trái dấu
Ư(1)={-1;1}
Như vậy các số a+c và b-c là 2 số đối nhau
TH1: Giả sử a=b => b+c= -(b-c)
=> b+c=-b+c
=> b= -b
=> b=0
=> a+c=0-c=-c
=> a= -c+c=0
Như vậy a=b và a cũng là số đối của b
TH2: a khác b
Có: a+c và b-c, một trong 2 là 1 và một trong 2 là -1
=> Tổng của a+c và b-c là 1+(-1)=0
=> a+b=0
a khác b nên a, b là 2 số đối nhau.
Vậy a, b là 2 số đối nhau.
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1:
Đa thức \(f\left(x\right)=x^2-5x\) nhận 0 và 5 làm nghiệm vì f(0)=f(5)=0
Câu 2:
\(g\left(1\right)=1-6+5=0\)
nên x=1 là nghiệm của đa thức g(x)
![](https://rs.olm.vn/images/avt/0.png?1311)
vì x, y nguyên==.>|x-5| và | y+1| là số tự nhiên
TH1 |x-5|=0
<=> x-5=0
<=> x=5
do đó |y+1| =2 <=> y+1=2 hoặc y+1= -2
<=> y=1 hoặc y= -3
TH2 |x-5| =1<=> x-5=1 hoặc x-5= -1
<=> x=6 hoặc x=4
do đó |y+1|=1 <=> y+1=1 hoặc y+1=-1
<=> y=0 hoặc y= -2
TH3 |x-5|=2 <=> x-5=2 hoặc x-5=-2
<=> x=7 hoặc x=3
do đó |y+1|=0 <=> y+1 =0 <=> y=-1
Vậy (x,y) là (5;1) , (5;-3), (6,0), (6,-2) ,(4;0), (4;-2), (7; -1) ,(3;-1)
|x-5|+|y+1|=2
TH1:
x-5=2
x=2+5
x=7
TH2:
y+1=2
y=2-1
y=1
Vay :x=7 và y=1 ( thỏa mãn đề bài )
![](https://rs.olm.vn/images/avt/0.png?1311)