Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chuyển vế :
\(x_1^2=2\left(m+1\right)x_1-m^2+1\)
thay vào Phuogw trình tìm m thôi
1. Với m=5
\(\Rightarrow x^2-\left(2.5+1\right).x+5^2-1=0\\ \Rightarrow x^2-11.x=-24\\ \)
\(\Rightarrow x^2-\frac{11}{2}.2.x+\left(\frac{11}{2}\right)^2=-24-\left(\frac{11}{2}\right)^2=\frac{-217}{4}\\ \Rightarrow\left(x+\frac{11}{2}\right)^2=-\frac{217}{4}\)
nên x thuộc rỗng
a) Phương trình \(x^2-2mx-2m-1=0\)có các hệ số a = 1; b = - 2m; c = - 2m - 1
\(\Delta=\left(-2m\right)^2-4\left(-2m-1\right)=4m^2+8m+4=4\left(m+1\right)^2\ge0\forall m\)
Vậy phương trình luôn có 2 nghiệm x1, x2 với mọi m (đpcm)
b) Theo Viète, ta có: \(x_1+x_2=2m;x_1x_2=-2m-1\)
Hệ thức \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{-5}{2}\Leftrightarrow2\left(x_1^2+x_2^2\right)=-5x_1x_2\)
\(\Leftrightarrow2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]=-5x_1x_2\)hay \(2\left(4m^2+4m+2\right)=10m+5\Leftrightarrow8m^2-2m-1=0\)\(\Leftrightarrow\orbr{\begin{cases}m=\frac{1}{2}\\m=-\frac{1}{4}\end{cases}}\)
Vậy \(m=\frac{1}{2}\)hoặc \(m=-\frac{1}{4}\)thì phương trình có 2 nghiệm x1, x2 thỏa mãn\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{-5}{2}\)
Ta có : \(\Delta=\left(2m-1\right)^2+1>0\)
nên pt luôn có 2 nghiệm phân biệt là x1 và x2
Theo ĐL Vi-ét ta có : \(\hept{\begin{cases}x_1+x_2=2m\\x_1\cdot x_2=\frac{2m-1}{2}\end{cases}}\)=> \(4m^2=x_1^2+2x_1x_2+x_2^2\) => \(2m^2=\frac{x_1^2+2x_1x_2+x_2^2}{2}\)
=> tìm m để thoả mãn \(2x_1^2+2\cdot2mx_2+2m^2-9=2x_1^2+2\left(x_1+x_2\right)\cdot x_2+\frac{x_1^2+2x_1x_2+x_2^2}{2}-9< 0\)
<=> \(4x_1^2+4x_1x_2+4x_2^2+x_1^2+2x_1x_2+x_2^2-18< 0\)
<=> \(5x_1^2+6x_1x_2+5x_2^2-18< 0\)
<=> \(3\left(x_1+x_2\right)^2+2\left(x_1+x_2\right)-18< 0\)
<=> \(2m\left(6m+2\right)-18< 0\)
Bn tự giải tiếp nha :D
Phương trình 2 nghiệm phân biệt khi
\(\Delta=\left(1-m\right)^2-4\left(-m\right).1=\left(m+1\right)^2>0\)
\(\Leftrightarrow m\ne-1\)
Hệ thức Vière : \(\hept{\begin{cases}x_1+x_2=m-1\\x_1.x_2=-m\end{cases}}\)
Khi đó \(x_1\left(5-x_2\right)\ge5\left(3-x_2\right)-36\)
<=> \(-x_1x_2+5\left(x_1+x_2\right)\ge-21\)
<=> \(-\left(-m\right)+5\left(m-1\right)\ge-21\)
\(\Leftrightarrow6m\ge-16\Leftrightarrow m\ge-\frac{8}{3}\)
Kết hợp điều kiện => \(\hept{\begin{cases}m\ge-\frac{8}{3}\\m\ne-1\end{cases}}\)thì thỏa mãn bài toán
\(\Delta=\left(1-m\right)^2+4m=\left(m+1\right)^2>0\Rightarrow m\ne-1\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=-m\end{matrix}\right.\)
\(x_1\left(5-x_2\right)\ge5\left(3-x_2\right)-36\)
\(\Leftrightarrow5\left(x_1+x_2\right)-x_1x_2\ge-21\)
\(\Leftrightarrow5\left(m-1\right)+m\ge-21\)
\(\Leftrightarrow m\ge-\dfrac{8}{3}\)
Kết hợp điều kiện ban đầu ta được: \(\left\{{}\begin{matrix}m\ne-1\\m\ge-\dfrac{8}{3}\end{matrix}\right.\)
PT
\(\Leftrightarrow\left(x+1\right)\left(x-1\right)\left(x+3\right)\left(x+5\right)=m\)
\(\Leftrightarrow\left(x^2+4x+3\right)\left(x^2+4x-5\right)=m\)
\(\Leftrightarrow\left(x^2+4x-1+4\right)\left(x^2+4x-1-4\right)=m\)
\(\Leftrightarrow\left(x^2+4x-1\right)^2-16=m\)
\(\Leftrightarrow\left(x^2+4x-1\right)^2=m+16\) \(\left(DK:m\ge-16\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+4x-1=\sqrt{m+16}\left(1\right)\\x^2+4x-1=-\sqrt{m+16}\left(2\right)\end{cases}}\)
PT(1)
\(\Leftrightarrow x^2+4x-1-\sqrt{m+16}=0\)
Ta co:
\(\Delta^`=2^2-1.\left(-1-\sqrt{m+16}\right)=5+\sqrt{m+16}>0\)
\(\Rightarrow\hept{\begin{cases}x_1=-2+\sqrt{5+\sqrt{m+16}}\\x_2=-2-\sqrt{5+\sqrt{m+16}}\end{cases}}\)
PT(2)
\(\Leftrightarrow x^2+4x-1+\sqrt{m+16}=0\)
Ta lai co:
\(\Delta^`=2^2-1.\left(-1+\sqrt{m+16}\right)=5-\sqrt{m+16}\)
De PT co 4 nghiem phan biet thi PT(1) va PT(2) co 2 nghiem phan bet
Suy ra PT(2) co 2 nghiem phan biet khi
\(5-\sqrt{m+16}>0\)
\(\Leftrightarrow m< 9\)
\(\Rightarrow\hept{\begin{cases}x_3=-2+\sqrt{5-\sqrt{m+16}}\\x_4=-2-\sqrt{5-\sqrt{m+16}}\end{cases}}\)
Ta lai co:
\(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_4}+\frac{1}{x_5}=\frac{x_1+x_2}{x_1x_2}+\frac{x_4+x_5}{x_4x_5}=\frac{4}{1+\sqrt{m+16}}+\frac{4}{1-\sqrt{m+16}}\text{ }=-\frac{8}{15+m}\)\(\left(DK:m\ne-15\right)\)
Ma \(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=-1\)
\(\Leftrightarrow-\frac{8}{m+15}=-1\)
\(\Leftrightarrow m=-7\)
Vay de PT \(\left(x^2-1\right)\left(x+3\right)\left(x+5\right)=m\)co 4 gnhiem phan biet thoa man
\(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=-1\)thi m=-7
\(\Delta'=m^2-6x+9-2m+7=m^2-8m+16=\left(m-4\right)^2\)
để phương trình có 2 nghiệm phân biệt => \(m\ne4\)
vời m khác 4 theo viet :
\(\left\{{}\begin{matrix}x1+x2=2m-6\left(1\right)\\x1.x2=2m-7\left(2\right)\end{matrix}\right.\)
\(x2-2x1=1\left(3\right)\)
từ 1 và 3 ta có hpt :
\(\left\{{}\begin{matrix}x1+x2=2m-6\\-2x1+x2=1\end{matrix}\right.< =>\left\{{}\begin{matrix}3x1=2m-7\\-2x1+x2=1\end{matrix}\right.< =>\left\{{}\begin{matrix}x1=\dfrac{2m-7}{3}\\\dfrac{-4m+14}{3}+x2=1\end{matrix}\right.< =>\left\{{}\begin{matrix}x1=\dfrac{2m-7}{3}\\x2=1-\dfrac{-4m+14}{3}=\dfrac{4m-11}{3}\end{matrix}\right.\)
thay \(\left\{{}\begin{matrix}x1=\dfrac{2m-7}{3}\\x2=1-\dfrac{-4m+14}{3}=\dfrac{4m-11}{3}\end{matrix}\right.\) vào phương trình 2
<=>\(\dfrac{2m-7}{3}.\dfrac{4m-11}{3}=2m-7< =>8m^2-50m+77=18m-63< =>8m^2-68m+140=0< =>\left(m-5\right)\left(2m-7\right)=0< =>m=5\left(tm\right);m=\dfrac{7}{2}\left(tm\right)\)