\(x^2+2\left(m+1\right)x+2m^2+9m+7=0\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2017

Theo vi-et ta có: \(\hept{\begin{cases}x_1+x_2=-2\left(m+1\right)\\x_1x_2=2m^2+9m+7\end{cases}}\)

Theo đề bài ta có:

\(\left|\frac{7\left(x_1+x_2\right)}{2}-x_1x_2\right|\le18\)

\(\Leftrightarrow\left|\frac{7\left(-2\left(m+1\right)\right)}{2}-\left(2m^2+9m+7\right)\right|\le18\)

 \(\Leftrightarrow\left|-2m-16m-14\right|\le18\)

Xét VT ta có: 

| - 2m2 - 16m - 14| = | ( - 2m2 - 16m - 32) + 18|

= |- 2(m + 4)2 + 18| \(\le\)|18| = 18

29 tháng 6 2017

em chỉ chứng minh được \(\dfrac{7\left(x_1+x_2\right)}{2}-x_1.x_2\le18\) gianroi

30 tháng 6 2017

x1x2=2m^2+9m+7

x1+x2=-(2m+2)

VT đpcm <=>

\(\left|\dfrac{-7\cdot2\left(m+1\right)}{2}-\left(2m^2+9m+7\right)\right|\)

=\(\left|-2m^2-16m-14\right|\)

đến đây có thể sử dụng máy tính casio fx-570Vn Plus để tìm GTLN = 18 tại m=-4

21 tháng 3 2017

ta thấy pt luôn có no . Theo hệ thức Vi - ét ta có:

x1 + x2 = \(\dfrac{-b}{a}\) = 6

x1x2 = \(\dfrac{c}{a}\) = 1

a) Đặt A = x1\(\sqrt{x_1}\) + x2\(\sqrt{x_2}\) = \(\sqrt{x_1x_2}\)( \(\sqrt{x_1}\) + \(\sqrt{x_2}\) )

=> A2 = x1x2(x1 + 2\(\sqrt{x_1x_2}\) + x2)

=> A2 = 1(6 + 2) = 8

=> A = 2\(\sqrt{3}\)

b) bạn sai đề

21 tháng 3 2017

Câu c làm tương tự, mẫu số nhân ra và nhóm lại theo dạng: x1+x2 và x1.x2

21 tháng 3 2017

TOÁN HỌC

Toán lớp 2

Bài 1, bài 2, bài 3, bài 4, bài 5 tiết 92.luyện tập (trang 96 sgk)

Bài 1: Số ?,Bài 2: Tính (theo mẫu),Bài 3: Mỗi xe đạp có hai bánh xe. Hỏi 8 xe đạp có bao nhiêu bánh xe ? Bài 4: Viết số thích hợp vào ô trống (theo mẫu),Bài 5: Viết số thích hợp vào ô trống (theo mẫu):

  • Lý thuyết, bài 1, bài 2, bài 3 tiết 93.bảng nhân 3 (trang 97sgk)
  • Bài 1, bài 2, bài 3, bài 4, bài 5 tiết 94.luyện tập (trang 98 sgk)
  • Lý thuyết, bài 1, bài 2, bài 3 tiết 95. bảng nhân 4 (trang 99 sgk)
  • Bài 1, bài 2, bài 3, bài 4 tiết 96.luyện tập (trang 100 sgk)

Xem thêm: CHƯƠNG V: PHÉP NHÂN VÀ PHÉP CHIA

Bài 1: Số ?

Bài 2: Tính (theo mẫu)

2cm x 3 = 6cm                          2kg x 4 =

2cm x 5 =                                2kg x 6 = 

2dm x 8 =                                2kg x 9 =

Bài 3: Mỗi xe đạp có hai bánh xe. Hỏi 8 xe đạp có bao nhiêu bánh xe ?

Bài 4: Viết số thích hợp vào ô trống (theo mẫu):

Bài 5: Viết số thích hợp vào ô trống (theo mẫu):

Bài giải:

Bài 1:

Bài 2:

2cm x 3 = 6cm                                2kg x 4 = 8kg

2cm x 5 = 10cm                               2kg x 6 = 12kg 

2dm x 8 = 16cm                               2kg x 9 = 18kg

Bài 3: 

Số bánh xe của 78 xe đạp là:

2 x 8 = 16 (bánh xe)

Đáp số: 16 bánh xe.

Bài 4: Hướng dẫn: Điền lần lượt từ trái sang phải vào các ô trống còn lại là: 12, 18, 20, 14, 10, 16, 4.

Bài 5:

Hướng dẫn: Điền lần lượt từ trái sang phải vào các ô trống các số là: 10, 14, 18, 20, 4.

Bài viết liên quan

Các bài khác cùng chuyên mục

  • Bài 1, bài 2, bài 3, bài 4, bài 5 trang 180 sgk toán lớp 2 (12/01)
  • Bài 1, bài 2, bài 3, bài 4, bài 5 trang 180,181 sgk toán lớp 2 (12/01)
  • Bài 1, bài 2, bài 3, bài 4, bài 4 trang 177, 178 sgk toán lớp 2 (12/01)
  • Bài 1, bài 2, bài 3, bài 4 trang 178,179 sgk toán lớp 2 (12/01)
  • Bài 1, bài 2, bài 3, bài 4, bài 5 trang 181 sgk toán lớp 2 (12/01)



Xem thêm tại: http://loigiaihay.com/bai-1-bai-2-bai-3-bai-4-bai-5-tiet-92luyen-tap-c114a15865.html#ixzz4bgVSXCQi

21 tháng 6 2019

Chị gì gì ơi những bài toán khó như vậy chị nên đăng trên H.VN 

Ở đó học sinh lớp 9,10,8,7 sẽ giúp cho 

21 tháng 6 2019

Ta có \(\Delta'=\left(m-1\right)^2-2m+5\ge0\)

=> \(m^2-4m+6\ge0\)luôn đúng

Theo vi-et ta có \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-5\end{cases}}\)

Khi đó 

\(P=\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^2-2\)

   \(=\left(\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}\right)^2-2\)

   \(=\left(\frac{4\left(m-1\right)^2}{2m-5}-2\right)^2-2\)

     \(=\left(\frac{4m^2-10m+2m-5+9}{2m-5}-2\right)^2-2\)

   \(=\left(2m+1+\frac{9}{2m-5}-2\right)^2-2\)

    \(=\left(2m-1+\frac{9}{2m-5}\right)^2-2\)

Để P là số nguyên

=> \(\frac{9}{2m-5}\)là số nguyên

=> \(2m-5\in\left\{\pm1;\pm3;\pm9\right\}\)

=> \(m\in\left\{-2;1;2;3;4;7\right\}\)

Kết hợp với ĐK 

=> \(m\in\left\{1;2;3;4;7\right\}\)

Vậy \(m\in\left\{1;2;3;4;7\right\}\)

NV
13 tháng 4 2020

\(\Delta'=\left(m+1\right)^2-\left(4m^2-2m+3\right)=-2m^2+4m-2\)

\(=-2\left(m-1\right)^2\le0\) \(\forall m\)

\(\Rightarrow\) Không tồn tại m để pt có 2 nghiệm phân biệt

Đề bài có vấn đề

Ta có : \(x^2+\left(m^2+1\right)x+m=2\)

\(\Leftrightarrow x^2+\left(m^2+1\right)x+m-2=0\left(a=1;b=m^2+1;c=m-2\right)\)

a, Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)hay 

\(\left(m^2+1\right)^2-4\left(-2\right)=m^4+1+8=m^4+9>0\) (hoàn toàn đúng, ez =)) 

b, Áp dụng hệ thức Vi et ta có : \(x_1+x_2=-m^2-1;x_1x_2=m-2\)

Đặt \(x_1;x_2\)lần lượt là \(a;b\)( cho viết dễ hơn )

Theo bài ra ta có \(\frac{2a-1}{b}+\frac{2b-1}{a}=ab+\frac{55}{ab}\)

\(\Leftrightarrow\frac{2a^2-a}{ab}+\frac{2b^2-b}{ab}=\frac{\left(ab\right)^2}{ab}+\frac{55}{ab}\)

Khử mẫu \(2a^2-a+2b^2-b=\left(ab\right)^2+55\)

Tự lm nốt vì I chưa thuộc hđt mà lm )): 

7 tháng 7 2020

a,\(x^2+\left(m^2+1\right)x+m=2\)

\(< =>x^2+\left(m^2+1\right)x+m-2=0\)

Xét \(\Delta=\left(m^2+1\right)^2-4.\left(m-2\right)=1+m^4-4m+8\)(đề sai à bạn)

b,Để phương trình có 2 nghiệm phân biệt : \(\Delta>0\)

\(< =>\left(m^2+1\right)^2-4\left(m-2\right)>0\)

\(< =>4m-8< m^4+1\)

\(< =>4m-9< m^4\)

\(< =>m>\sqrt[4]{4m-9}\)

Ta có : \(\frac{2x_1-1}{x_2}+\frac{2x_2-1}{x_1}=x_1x_2+\frac{55}{x_1x_2}\)

\(< =>\frac{2x_1^2-x_1+2x_2^2-x_2}{x_1x_2}=\frac{\left(x_1x_2\right)^2+55}{x_1x_2}\)

\(< =>2\left[\left(x_1+x_2\right)\left(x_1-x_2\right)\right]-\left(x_1+x_2\right)=\left(x_1x_2\right)^2+55\)

đến đây dễ rồi ha 

NV
4 tháng 5 2019

Theo Viet ta có \(\left\{{}\begin{matrix}x_1+x_2=-\frac{3m}{2}\\x_1x_2=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(P=\left(x_1+x_2\right)^2-4x_1x_2+\left(\frac{x_1+x_2+x_1x_2\left(x_1+x_2\right)}{x_1x_2}\right)^2\)

\(P=\frac{9m^2}{4}+2\sqrt{2}+\left(\frac{-\frac{3m}{2}-\frac{\sqrt{2}}{2}\left(-\frac{3m}{2}\right)}{-\frac{\sqrt{2}}{2}}\right)^2\)

\(P=\frac{9m^2}{4}+2\sqrt{2}+\left(\frac{27-8\sqrt{2}}{4}\right)m^2\)

\(P=\left(\frac{18-9\sqrt{2}}{2}\right)m^2+2\sqrt{2}\ge2\sqrt{2}\)

\(\Rightarrow P_{min}=2\sqrt{2}\) khi \(m=0\)