Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Làm câu b)
Để phương trình có hai nghiệm phân biệt:
\(\Delta'\ge0\Leftrightarrow3^2-\left(m+1\right)\ge0\Leftrightarrow m\le8\)
Áp dụng định lí Vi-ét ta có:
\(\hept{\begin{cases}x_1+x_2=6\\x_1.x_2=m+1\end{cases}}\)(1)
Xét: \(x^2_1+x^2_2=3\left(x_1+x_2\right)\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=3\left(x_1+x_2\right)\)(2)
Từ 1, 2 ta có:
\(6^2-2\left(m+1\right)=3.6\Leftrightarrow m=8\)(tm)
Vậy ...
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(3x-5\right)\left(x+8\right)+8x\left(3x-5\right)=0\)
=>(3x-5)(9x+8)=0
=>x=5/3 hoặc x=-9/8
\(x_1-x_2=\dfrac{5}{3}+\dfrac{9}{8}=\dfrac{40}{24}+\dfrac{27}{24}=\dfrac{67}{24}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Phan 1 theo delta
Phần 2 thì |...|=\(\sqrt{\left(x1+x2\right)^2-4.x1x2}\)
Áp dụng Vi-et thay vào mà tính nhé
\(x^2-\left(2m+3\right)+m-3=0\)
a/ ( a = 1; b = -(2m+3); c = m - 3 )
\(\Delta=b^2-4ac\)
\(=\left[-\left(2m+3\right)\right]^2-4.1.\left(m-3\right)\)
\(=4m^2+12m+9-4m+12\)
\(=4m^2+8m+21\)
\(=\left(2m\right)^2+8m+2^2-2^2+21\)
\(=\left(2m+2\right)^2+17>0\forall m\)
Vậy pt luôn có 2 nghiệm phân biệt với mọi m
b/ Theo Vi-et ta có: \(\hept{\begin{cases}S=x_1+x_2=-\frac{b}{a}=2m+3\\P=x_1x_2=\frac{c}{a}=m-3\end{cases}}\)
Đặt \(A=!x_1-x_2!\)
\(\Rightarrow A^2=\left(!x_1-x_2!\right)^2=x_1^2-2x_1x_2+x_2^2=\left(x_1+x_2\right)^2-4x_1x_2\)
\(\Leftrightarrow A^2=\left(2m+3\right)^2-4\left(m-3\right)=4m^2+12m+9-4m+12\)
\(\Leftrightarrow A^2=4m^2+8m+21=\left(2m\right)^2+8m+2^2-2^2+21\)
\(\Leftrightarrow A^2=\left(2m+2\right)^2+17\ge17\)
\(MinA^2=17\Rightarrow MinA=\sqrt{17}\Leftrightarrow\left(2m+2\right)^2=0\Leftrightarrow m=-1\)
Vậy m = -1 là giá trị cần tìm
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^{2^{ }}+2\left(m-1\right)x-6m-7=0\left(1\right)\)
a) \(Dental=\left[2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-6m-7\right)\)
\(< =>4\cdot\left(m^2-2m+1\right)+24m+28\)
\(< =>4m^2-8m+4+24m+28\)
\(< =>4m^2+16m+32\)
\(< =>\left(2m+4\right)^2+16>0\) với mọi m
Vậy phương (1) luôn có 2 nghiệm phân biệt với mọi m
b) Theo định lí vi ét ta có:
x1+x2= \(\dfrac{-2\left(m-1\right)}{1}=-2m+1\)
x1x2= \(-6m-7\)
quy đồng
khử mẫu
tách sao cho có tích và tổng
thay x1x2 x1+x2
kết luận
mặt xấu vl . . .
\(5^{x-1}+5.0,2^{x-2}=26\)
\(\Leftrightarrow5^{x-1}+\frac{5}{5^{x-2}}=26\)
\(\Leftrightarrow5^{x-1}+\frac{25}{5^{x-1}}=26\)
Đặt \(5^{x-1}=a\)
\(\Rightarrow a+\frac{25}{a}=26\)
\(\Leftrightarrow a^2-26a+25=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=1\\a=25\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}5^{x-1}=1\\5^{x-1}=25\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-1=2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)