Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo vi-et ta có: \(\hept{\begin{cases}x_1+x_2=-2\left(m+1\right)\\x_1x_2=2m^2+9m+7\end{cases}}\)
Theo đề bài ta có:
\(\left|\frac{7\left(x_1+x_2\right)}{2}-x_1x_2\right|\le18\)
\(\Leftrightarrow\left|\frac{7\left(-2\left(m+1\right)\right)}{2}-\left(2m^2+9m+7\right)\right|\le18\)
\(\Leftrightarrow\left|-2m-16m-14\right|\le18\)
Xét VT ta có:
| - 2m2 - 16m - 14| = | ( - 2m2 - 16m - 32) + 18|
= |- 2(m + 4)2 + 18| \(\le\)|18| = 18
Bài 3: \(A=\frac{\left(2a+b+c\right)\left(a+2b+c\right)\left(a+b+2c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Đặt a+b=x;b+c=y;c+a=z
\(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)
Bài 4: \(A=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x-18}{2-x}+\frac{18}{2-x}+\frac{2}{x}\ge-9+\frac{\left(\sqrt{18}+\sqrt{2}\right)^2}{2-x+x}=-9+\frac{32}{2}=7\)
Dấu = xảy ra khi\(\frac{\sqrt{18}}{2-x}=\frac{\sqrt{2}}{x}\Rightarrow x=\frac{1}{2}\)
Vì pt đã cho là pt bậc 2 \(\Rightarrow a\ne0\)
Do x0 là nghiệm \(\Rightarrow-ax_0^2=bx_0+c\)
\(\Rightarrow-x_0^2=\frac{b}{a}x_0+\frac{c}{a}\)
\(\Rightarrow\left|-x_0\right|^2=\left|\frac{b}{a}x_0+\frac{c}{a}\right|\le\left|\frac{b}{a}\right|\left|x_0\right|+\left|\frac{c}{a}\right|\le M\left|x_0\right|+M\)
\(\Rightarrow\left|x_0\right|^2-1< M\left(\left|x_0\right|+1\right)\)
\(\Rightarrow\left(\left|x_0\right|-1\right)\left(\left|x_0\right|+1\right)< M\left(\left|x_0\right|+1\right)\)
\(\Rightarrowđpcm\)