\(x_1,x_2\) là no của phương trình \(x^2-2mx+m^2-1=0\). T...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2018

\(x_1,x_2\) là nghiệm của phương trình . Nên theo định lí vi-et ta có :

\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-1\end{matrix}\right.\left(1\right)\)

Ta lại có : \(3\sqrt{x_1x_2-x_1-x_2+2}-\sqrt{x_1^2+x_2^2-2m^2-1}\ge2\)

\(\Leftrightarrow3\sqrt{x_1x_2-\left(x_1+x_2\right)+2}-\sqrt{\left(x_1+x_2\right)^2-2x_1x_2-2m^2-1}\ge2\left(2\right)\)

Thay \(\left(1\right)\) vào \(\left(2\right)\) ta được :

\(3\sqrt{m^2-1-2m+2}-\sqrt{4m^2-2m^2+2-2m^2-1}\ge2\)

\(\Leftrightarrow3\sqrt{m^2-2m+1}-\sqrt{1}\ge2\)

\(\Leftrightarrow3\sqrt{\left(m-1\right)^2}-1\ge2\)

\(\Leftrightarrow3\left|m-1\right|\ge3\)

\(\Leftrightarrow\left|m-1\right|\ge1\)

\(\Leftrightarrow m\ne1\)

Vậy \(m\ne1\)

17 tháng 8 2018

Mysterious Person CẢM ƠN BÁC :))

14 tháng 5 2020

Xét \(x^2-\left(2m+1\right)x-3=0\left(1\right)\)

PT (1) có a.c=\(1\cdot\left(-3\right)=-3< 0\)

=> PT (1) luôn có 2 nghiệm phân biệt trái dấu với mọi m

Mà \(x_1< x_2\left(gt\right)\)nên x1<0 và x2>0 => \(\hept{\begin{cases}\left|x_1\right|=-x_1\\\left|x_2\right|=x_2\end{cases}}\)

Áp dụng hệ thức Vi-et ta có \(x_1+x_2=2m+1\)

Theo bài ra \(\left|x_1\right|-\left|x_2\right|=5\Rightarrow-x_1-x_2=5\Leftrightarrow x_1+x_2=-5\Leftrightarrow2m+1=-5\Leftrightarrow m=-3\)

5 tháng 7 2019

Xét phương trình trên có:

\(\Delta'=\left(m-2\right)^2-\left(m^2-2m+4\right)=m^2-4m+4-m^2+2m-4=-2m\)

Để phương trình trên có hai nghiệm phân biệt \(x_1;x_2\)điều kiện là:

\(\Delta'>0\Leftrightarrow-2m>0\Leftrightarrow m< 0\)

Với m<0. Áp dụng định lí Vi ét ta có:

\(\hept{\begin{cases}x_1+x_2=-2\left(m-2\right)\\x_1.x_2=m^2-2m+4\end{cases}}\)

=> \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1.x_2=4\left(m-2\right)^2-2\left(m^2-2m+4\right)=2m^2-12m+8\)

Ta có:

\(\frac{2}{x_1^2+x_2^2}-\frac{1}{x_1x_2}=\frac{1}{15m}\)

<=> \(\frac{2}{2m^2-12m+8}-\frac{1}{m^2-2m+4}=\frac{1}{15m}\)(điều kiện: \(2m^2-12m+8\ne0\))

<=> \(\frac{1}{m^2+4-6m}-\frac{1}{m^2+4-2m}=\frac{1}{15m}\)

<=> \(\frac{4m}{\left(m^2+4-6m\right)\left(m^2+4-2m\right)}=\frac{1}{15m}\)

<=> \(60m^2=\left(m^2+4\right)^2-8m\left(m^2+4\right)+12m^2\)

<=> \(\left(m^2+4\right)^2-8m\left(m^2+4\right)-48m^2=0\)

<=> \(\left(\frac{m^2+4}{m}\right)^2-8\frac{m^2+4}{m}-48=0\)

Đặt t=\(\frac{m^2+4}{m}< 0\)

Ta có phương trình ẩn t:

\(t^2-8t-48=0\Leftrightarrow\orbr{\begin{cases}t=-4\\t=12\left(loai\right)\end{cases}}\)

Với t=-4 ta có:

\(\frac{m^2+4}{m}=-4\Leftrightarrow m^2+4m+4=0\Leftrightarrow\left(m+2\right)^2=0\Leftrightarrow m=-2\)( tmđk)

vậy m=-2

23 tháng 5 2019

\(\Delta=\left(2-m\right)^2-4.\left(-3\right)=\left(m-2\right)^2+12\ge0\) luôn đúng 

Do đó pt luôn có hai nghiệm \(x_1,x_2\) với mọi m 

Ta có : \(\sqrt{x_1^2+2018}-x_1=\sqrt{x_2^2+2018}+x_2\)

\(\Leftrightarrow\)\(x_1^2+2018-2\sqrt{\left(x_1^2+2018\right)\left(x_2^2+2018\right)}+x_2^2+2018=x_1^2+2x_1x_2+x_2^2\)

\(\Leftrightarrow\)\(2018-\sqrt{\left(x_1x_2\right)^2+2018\left(x_1+x_2\right)^2-4036x_1x_2+2018^2}=x_1x_2\) (*) 

Theo định lý Vi-et ta có : \(\hept{\begin{cases}x_1+x_2=m-2\\x_1x_2=-3\end{cases}}\)

(*) \(\Leftrightarrow\)\(2018-\sqrt{\left(-3\right)^2+2018\left(m-2\right)^2-4036.\left(-3\right)+2018^2}=-3\)

\(\Leftrightarrow\)\(9+2018\left(m-2\right)^2+12108+2018^2=2021^2\)

\(\Leftrightarrow\)\(2018\left(m-2\right)^2=0\)

\(\Leftrightarrow\)\(m=2\)

Vậy với m=2 thì hai nghiệm pt thoả mãn \(\sqrt{x_1^2+2018}-x_1=\sqrt{x_2^2+2018}+x_2\)