\(x_1,x_2\) là hai nghiệm của phương trình \(3x^2-ax-b=0\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2017

Theo hệ thức viet thì đáp án là câu d(đk là a khác 0)

1 tháng 6 2017

chọn câu d)

Chọn B

29 tháng 5 2018

ko dung vi et

a/∆=9+28=37

x=(3±√37)/2

x-1=(1±√37)/2

1/(x-1)=2(1±√37)/(1-37)=(1±√37)/(-18)

A=(1+1)/(-18)=-1/9

29 tháng 5 2018

Vi-et đi bạn :v

13 tháng 5 2017

Câu a: -x1,-x2 là nghiệm của ptr x2-(-x1-x2)x+x1x2=0
<=>x2-px-5=0(x1+x2=-p,x1x2=-5)

Câu b: \(\dfrac{1}{x_{1}}\),\(\dfrac{1}{x_{2}}\)là nghiệm của ptr: t2-(\(\dfrac{1}{x_{1}}\)+\(\dfrac{1}{x_{2}}\))+\(\dfrac{1}{x_{1}x_{2}}\)=0
<=>t2-\(\dfrac{p}{5}\)x-\(\dfrac{1}{5}\)=0

a: \(\left\{{}\begin{matrix}x_1+x_2=-b\\x_1x_2=c\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=10\\c=-24\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}x_1+x_2=-b\\x_1x_2=c\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-b=-5\\c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=5\\c=0\end{matrix}\right.\)

c: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=1-2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2\\c=-1\end{matrix}\right.\)

d: \(\left\{{}\begin{matrix}x_1+x_2=3-\dfrac{1}{2}=\dfrac{5}{2}\\x_1x_2=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-\dfrac{5}{2}\\c=-\dfrac{3}{2}\end{matrix}\right.\)

b: \(PT\Leftrightarrow x^2+\left(m-3\right)x-m=0\)

\(\text{Δ}=\left(m-3\right)^2+4m\)

\(=m^2-6m+9+4m\)

\(=m^2-2m+1+8=\left(m-1\right)^2+8>0\)

Do đó: PT luon có hai nghiệm phân biệt

\(\dfrac{2}{x_1}+\dfrac{2}{x_2}=\dfrac{2x_1+2x_2}{x_1x_2}=\dfrac{2\cdot\left(-m+3\right)}{-m}=\dfrac{-2m+6}{-m}\)

\(\dfrac{4x_2}{x_1}+\dfrac{4x_1}{x_2}=\dfrac{4\left(x_1^2+x_2^2\right)}{x_1x_2}\)

\(=\dfrac{4\left(x_1+x_2\right)^2-8x_1x_2}{x_1x_2}=\dfrac{4\left(-m+3\right)^2-8\cdot\left(-m\right)}{-m}\)

\(=\dfrac{4\left(m-3\right)^2+8m}{-m}\)

\(=\dfrac{4m^2-24m+36+8m}{-m}=\dfrac{4m^2-16m+36}{-m}\)

c: \(A=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}+1\)

\(=\sqrt{\left(-m+3\right)^2-4\cdot\left(-m\right)}+1\)

\(=\sqrt{m^2-6m+9+4m}+1\)

\(=\sqrt{m^2-2m+1+8}+1\)

\(=\sqrt{\left(m-1\right)^2+8}+1\ge2\sqrt{2}+1\)

Dấu '=' xảy ra khi m=1

1 tháng 6 2020

Ta có: \(x^2-5x+3=0\)

Áp dụng định lí viet ta có: \(\hept{\begin{cases}x_1+x_2=5\\x_1x_2=3\end{cases}}\)

a) \(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=5^2-2.3=19\)

b) \(B=x_1^3+x_2^3=\left(x_1+x_2\right)^3-3\left(x_1+x_2\right)x_1x_2=5^3-3.5.3=80\)

c) \(C=\left|x_1-x_2\right|\)>0

=> \(C^2=x_1^2+x_2^2-2x_1x_2=19-2.3=13\)

=> C = căn 13

d) \(D=x_2+\frac{1}{x_1}+x_1+\frac{1}{x_2}=\left(x_1+x_2\right)+\frac{x_1+x_2}{x_1x_2}=5+\frac{5}{3}=5\frac{5}{3}\)

e) \(E=\frac{1}{x_1+3}+\frac{1}{x_2+3}=\frac{\left(x_1+x_2\right)+6}{x_1x_2+3\left(x_1+x_2\right)+9}=\frac{5+6}{3+3.5+9}=\frac{11}{27}\)

g) \(G=\frac{x_1-3}{x_1^2}+\frac{x_2-3}{x_2^2}=\left(\frac{1}{x_1}+\frac{1}{x_2}\right)-3\left(\frac{1}{x_1^2}+\frac{1}{x_2^2}\right)\)

\(=\frac{x_1+x_2}{x_1x_2}-3\frac{x_1^2+x_2^2}{x_1^2.x_2^2}=\frac{5}{3}-3.\frac{19}{3^2}=-\frac{14}{3}\)

NV
25 tháng 12 2018

\(x^2+5x-3=0\Rightarrow\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=-5\\x_1x_2=\dfrac{c}{a}=-3\end{matrix}\right.\)

\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1+x_2}{x_1x_2}=\dfrac{-5}{-3}=\dfrac{5}{3}\)

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(-5\right)^2-2.\left(-3\right)=31\)

26 tháng 5 2021

a) Áp dụng đl Vi-ét vào pt ta có:

x1+x2=-1.5

x1 . x2= -13

C=x1(x2+1)+x2(x1+1)

 = 2x1x2 + x1+x2

= 2.(-13) -1.5

= -26 -1.5

= -27.5

26 tháng 5 2021

a, Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-\frac{3}{2}\\x_1x_2=\frac{c}{a}=-13\end{cases}}\)

Ta có : \(C=x_1\left(x_2+1\right)+x_2\left(x_1+1\right)=x_1x_2+x_1+x_1x_2+x_2\)

\(=-13-\frac{3}{2}-13=-26-\frac{3}{2}=-\frac{55}{2}\)