\(x_1;x_2\) là 2 nghiệm của phương trình \(x^2-2\left(2m+1\right...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 4 2022

\(\Delta'=\left(2m+1\right)^2-\left(4m^2+4m\right)=1>0;\forall m\Rightarrow\) pt luôn có 2 nghiệm pb

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(2m+1\right)\\x_1x_2=4m^2+4m\end{matrix}\right.\)

\(\left|x_1-x_2\right|=x_1+x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2\ge0\\\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(2m+1\right)\ge0\\-2x_1x_2=2x_1x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ge-\dfrac{1}{2}\\x_1x_2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ge-\dfrac{1}{2}\\4m^2+4m=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m=0\\mm=-1< -\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\)

15 tháng 4 2022

Em cảm ơn ạ

NV
22 tháng 5 2019

\(\Delta'=\left(2m+1\right)^2-4m^2-4m=1>0\)

Phương trình luôn có 2 nghiệm pb

Do \(\left|x_1-x_2\right|\ge0\Rightarrow x_1+x_2\ge0\Rightarrow2m+1\ge0\Rightarrow m\ge-\frac{1}{2}\)

Khi đó, bình phương 2 vế ta được:

\(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2\)

\(\Leftrightarrow x_1^2-2x_1x_2+x_2^2=x_1^2+2x_1x_2+x_2^2\)

\(\Leftrightarrow-4x_1x_2=0\Leftrightarrow x_1x_2=0\)

\(\Leftrightarrow4m^2+4m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-1< -\frac{1}{2}\left(l\right)\end{matrix}\right.\)

NV
7 tháng 11 2019

\(\Delta'=\left(2m+1\right)^2-\left(4m^2+4m-3\right)=4\)

Phương trình đã cho luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x=2m+3\\x=2m-1\end{matrix}\right.\)

\(2m+3>2m-1\) \(\forall m\Rightarrow\left\{{}\begin{matrix}x_1=2m-1\\x_2=2m+3\end{matrix}\right.\)

\(\Rightarrow\left|2m-1\right|=2\left|2m+3\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}2m-1=4m+6\\1-2m=4m+6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=-\frac{7}{2}\\m=-\frac{5}{6}\end{matrix}\right.\)

NV
16 tháng 7 2020

\(\Delta'=\left(2m+1\right)^2-4m^2-4m+3=4>0\)

Pt luôn có 2 nghiệm pb \(\left[{}\begin{matrix}x=2m+1-2=2m-1\\x=2m+1+2=2m+3\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x_1=2m-1\\x_2=2m+3\end{matrix}\right.\) \(\Rightarrow\left|2m-1\right|=2\left|2m+3\right|\Rightarrow\left[{}\begin{matrix}4m+6=2m-1\\4m+6=1-2m\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m=-\frac{7}{2}\\m=-\frac{5}{6}\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}x_1=2m+3\\x_2=2m-1\end{matrix}\right.\) \(\Rightarrow\left|2m+3\right|=2\left|2m-1\right|\)

\(\Rightarrow\left[{}\begin{matrix}2m+3=4m-2\\2m+3=2-4m\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=\frac{5}{2}\\m=-\frac{1}{6}\end{matrix}\right.\)

16 tháng 7 2020

@Akai Haruma @Nguyễn Lê Phước Thịnh giúp em với ạ

3 tháng 4 2017

câu hỏi trên Vio đúng ko bn

9 tháng 4 2017

Bài này nếu tinh ý một chút Đức sẽ nhận ra \(a-b+c=1+4m+1-4m-2=0\)

Suy ra pt trên có \(\hept{\begin{cases}x_1=-1\\x_2=\frac{-c}{a}=4m+2\end{cases}}\)

Thay vào \(x_1^5+x_2^5=242\) \(\Leftrightarrow\) \(\left(-1\right)^5+\left(4m+2\right)^5=242\) \(\Leftrightarrow\) \(m=0.25\)