\(\sqrt{16x+m-4}=4x^2-18x+4-m\) có...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 3 2019

Đặt \(\sqrt{16x+m-4}=a\ge0\Rightarrow4-m=16x-a^2\)

Pt trở thành:

\(a=4x^2-18x+16x-a^2\Leftrightarrow4x^2-a^2-\left(2x+a\right)=0\)

\(\Leftrightarrow\left(2x-a\right)\left(2x+a\right)-\left(2x+a\right)=0\)

\(\Leftrightarrow\left(2x-a-1\right)\left(2x+a\right)=0\Rightarrow\left[{}\begin{matrix}2x-1=a\left(1\right)\\2x=-a\left(2\right)\end{matrix}\right.\)

Trước hết ta biện luận số nghiệm của (1) và (2) dựa vào m:

TH1: \(2x-1=a\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{1}{2}\\\left(2x-1\right)^2=16x+m-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{1}{2}\\4x^2-20x+5=m\end{matrix}\right.\)

\(\Rightarrow\) \(m=-20\) pt có nghiệm duy nhất (nghiệm kép); \(-20< m\le-4\) pt có 2 nghiệm; \(m>-4\) pt có 1 nghiệm; \(m< -20\) vô nghiệm. (3)

TH2: \(-2x=a\Rightarrow\left\{{}\begin{matrix}x\le0\\4x^2=16x+m-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le0\\4x^2-16x+4=m\end{matrix}\right.\)

\(\Rightarrow m< 4\) pt vô nghiệm; \(m\ge4\) pt có một nghiệm (4)

Từ (3);(4) ta có nhận xét:

- Nếu \(m\ge4\Rightarrow\) (1) và (2) đều có nghiệm duy nhất \(\Rightarrow\) phương trình đã cho có 2 nghiệm (loại)

- Nếu \(m< -20\) cả 2 pt đều vô nghiệm (loại)

- Nếu \(-20< m\le-4\) \(\Rightarrow\left(1\right)\) có 2 nghiệm, (2) vô nghiệm \(\Rightarrow\) pt có 2 nghiệm (loại)

- Nếu \(m=-20\) thì (1) có 2 nghiệm, (2) vô nghiệm (nhận)

- Nếu \(-4< m< 4\Rightarrow\) (1) có 1 nghiệm, (2) vô nghiệm \(\Rightarrow\) pt đã cho có 1 nghiệm (nhận)

Vậy \(\left[{}\begin{matrix}m=-20\\-4< m< 4\end{matrix}\right.\) thì tập nghiệm của pt có 1 phần tử

\(\Rightarrow\sum T=-20\) (khoảng \(\left(-4;4\right)\) các giá trị nguyên của m triệt tiêu khi cộng lại)

16 tháng 3 2019

Cho em hỏi là chỗ m = -20 ở TH1 là sao ạ

6 tháng 12 2019

\(\text{ }DK:4x^2-18x+4-m\ge0\)

PT\(\Leftrightarrow16x+m-4+\sqrt{16x+m-4}+\frac{1}{4}-\left(4x^2-2x+\frac{1}{4}\right)=0\)

\(\Leftrightarrow\left(\sqrt{16x+m-4}+\frac{1}{2}\right)^2-\left(2x-\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow\left(\sqrt{16x+m-4}+2x\right)\left(\sqrt{16x+m-4}-2x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{16x+m-4}=-2x\left(1\right)\\\sqrt{16x+m-4}=2x-1\left(2\right)\end{cases}}\)

PT(1)\(\Leftrightarrow4x^2-16x-m+4=0\)

De PT co nghiem thi 

\(\Delta^`=4m-48\ge0\)

\(\Rightarrow m\ge12\)

\(\Rightarrow x_1=2+\frac{1}{2}\sqrt{m-12};x_2=2-\frac{1}{2}\sqrt{m-12};x_3=2\)

\(\Rightarrow m\in\left\{12;13;14;15;16;18;...\right\}\)

PT(2) cung vay do :)

29 tháng 5 2017

x − m x + 1 = x − 2 x − 1 ⇔ x ≠ ± 1 m x = m + 2

Phương trình đã cho có nghiệm ⇒ m ≠ 0 x = 1 + 2 m ≠ ± 1 ⇔ m ≠ 0 m ≠ 1

Vì m Z, m [−3; 5] nên m S = {−3; −2; 1; 2; 3; 4; 5}.

Đáp án cần chọn là: D

8 tháng 3 2017

Phương trình viết lại  m + 1 x = 3 m 2 - 1 x = 1 - m

Phương trình đã cho có nghiệm duy nhất khi  3 m 2 - m - 2 ≠ 0 ⇔ m ≠ 1 m ≠ − 2 3

Do m Z và m [−5; 10]  m {−5; −4; −3; −2; −1; 0; 2; 3; 4; 5; 6; 7; 8; 9; 10}.

Do đó, tổng các phần tử trong S bằng 39.

Đáp án cần chọn là: B

8 tháng 7 2021

Ta có : \(x+y\left(2+3x\right)=3\Leftrightarrow y=\frac{3-x}{3x+2}\)  ( vì x > 0 ) 

Khi đó : \(x+y=x+\frac{3-x}{3x+2}=\frac{3x^2+x+3}{3x+2}=A\) 

Chứng minh được :  \(A\ge\frac{-3+2\sqrt{11}}{3}\) => ... 

11 tháng 4 2019

Phương trình có nghiệm khi  ∆ = m 2 - 144 ≥ 0 ⇔ m 2 ≥ 12 2 ⇔ m ≥ 12 m ≤ − 12

Do đó tổng các phần tử trong tập S bằng 0

Đáp án cần chọn là: D