\(S_{\left(n\right)}\) là tổng các chữ số của số tự nhien n . Tìm số n sao cho n+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2017

LƯU Ý

Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.

Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy các bạn học sinh chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.

Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày

Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web h.vn để được giải đáp tốt hơn.

7 tháng 9 2017

PHải là k chứ

Đặt \(\hept{\begin{cases}x=\sqrt{2}+1\\y=\sqrt{2}-1\end{cases}}\)

=> \(\hept{\begin{cases}xy=1\\x+y=2\sqrt{2}\end{cases}}\)

Ta có \(S_{2009}.S_{2010}=\left(x^{2009}+y^{2009}\right)\left(x^{2010}+y^{2010}\right)=\left(x^{4019}+y^{4019}\right)+\left(xy\right)^{2009}\left(x+y\right)\)

\(=S_{4019}+2\sqrt{2}\)

=> \(S_{2009}.S_{2010}-S_{4019}=2\sqrt{2}\)(dpcm)

12 tháng 10 2020

Đề là \(S_{2009}.S_{2010}\) chứ

12 tháng 10 2020

Đặt \(\sqrt{2}+1=a;\sqrt{2}-1=b\Rightarrow ab=1\)

Ta có: \(S_{2009}.S_{2010}=\left(a^{2009}+b^{2009}\right)\left(a^{2010}+b^{2010}\right)\)

\(=a^{2009}.a^{2010}+b^{2009}.a^{2010}+a^{2009}.b^{2010}+b^{2009}.b^{2010}\)

\(=a^{2009}.b^{2009}\left(a+b\right)+a^{4019}+b^{4019}\)

\(=1.2\sqrt{2}+S_{4019}=S_{4019}+2\sqrt{2}\)

\(\Rightarrow S_{2009}.S_{2010}-S_{4019}=2\sqrt{2}\)

30 tháng 11 2022

Bài 2:

\(\left\{{}\begin{matrix}a+1>=2\sqrt{a}\\b+1>=2\sqrt{b}\\c+1>=2\sqrt{c}\end{matrix}\right.\)

=>\(\left(a+1\right)\left(b+1\right)\left(c+1\right)>=8\sqrt{abc}=8\)

26 tháng 10 2016

Mình viết quy trình bấm phím luôn nhé :

  • Quy trình tính Un\(D=D+1:A=\sqrt[3]{B.C^2+2010}:C=B:B=A:D=D+1:A=\sqrt[3]{B^2.C+2011}:C=B:B=A\)

Bấm CALC , Máy hỏi D? -> 2

B? -> 2

C? -> 1

Bấm liên tiếp dấu "=" , D chính là trị số của Un cần tìm.

Từ đó tính được U10 = 22,063283 ; U15 = 25,562651 ; U21 = 29,008768 ; U27 = 31,791400

  • Quy trình bấm phím Sn :

\(D=D+1:A=\sqrt[3]{B.C^2+2010}:X=X+A:C=B:B=A:D=D+1:A=\sqrt[3]{B^2.C+2011}:X=X+A:C=B:B=A\)

Bấm CALC , nhập D = 2 , B = 2 , C = 1 , X = 0

Bấm liên tiếp dấu "=" . D chính là trị số của Sn cần tìm.

Được S10 = 141,181370 ; S15 = 262,375538 ; S21 = 428,820575 ; S27 = 613,330707

 

 

26 tháng 10 2016

Quy trình bấm phím Un : A chính là Un

Quy trình bấm phím Sn : X chính là Sn

Các giá trị D = 3 tức là U3 (số 3 thôi nhé) , D = 4 tức U4 ...

Nhận thấy n=2 thỏa mãn điều kiện

Với n>2 ta có: 

\(n^6-1=\left(n^3-1\right)\left(n^3+1\right)=\left(n^3-1\right)\left(n+1\right)\left(n^2-n+1\right)\)

Do đó tất cả các thừa số nguyên tố của \(n^2-n-1\)chia hết cho \(n^3-1\)hoặc \(n^2-1=\left(n-1\right)\left(n+1\right)\)

Để ý rằng \(\left(n^2-n+1;n^3-1\right)\le\left(n^3+1;n^3-1\right)\le2\)

Mặt khác \(n^2-n+1=n\left(n-1\right)+1\)là số lẻ, do đó tất cả các thừa số nguyên tố của \(n^2-n-1\)chia hết cho \(n+1\)

Nhưng \(n^2-n+1=\left(n+1\right)\left(n-2\right)+3\)

Vì vậy ta phải có \(n^2-n+1=3^k\left(k\in Z^+\right)\)

Vì \(n>2\Rightarrow k\ge2\)

do đó \(3|n^2-n+1\Rightarrow n\equiv2\left(mod3\right)\)

Nhưng mỗi TH \(n\equiv2,5,8\left(mod9\right)\Rightarrow n^2-n+1\equiv3\left(mod9\right)\)(mâu thuẫn)

Vậy n=2

4 tháng 3 2020

Bài làm rất hay mặc dù làm rất tắt.

Tuy nhiên:

Dòng thứ 4: Ước số nguyên tố của \(n^2-n+1\)chia hết cho \(n^3-1\)hoặc \(n^2-1\)( em viết thế này không đúng rồi )

------> Sửa: ước số nguyên tố của \(n^2-n+1\) chia hết \(n^3-1\) hoặc  \(n^2-1\)

Hoặc:  ước số nguyên tố của \(n^2-n+1\) là ước  \(n^3-1\) hoặc  \(n^2-1\)

Dòng thứ 6 cũng như vậy:

a chia hết b khác hoàn toàn a chia hết cho b 

a chia hết b nghĩa là a là ước của b ( a |b)

a chia hết cho b nghĩa là b là ước của a.( \(a⋮b\))

3 dòng cuối cô không hiểu  em giải thích rõ giúp cô với. Please!!!!

Nhưng cô có cách khác dễ hiểu hơn này:

\(n^2-n+1=3^k\);

 \(n+1⋮3\)=> tồn tại m để : n + 1 = 3m

=> \(\left(n+1\right)\left(n-2\right)+3=3^k\)

<=>\(3m\left(n+1-3\right)+3=3^k\)

<=> \(m\left(n+1\right)-3m+1=3^{k-1}\)

=> \(m\left(n+1\right)-3m+1⋮3\)

=> \(1⋮3\)vô lí