\(y=f\left(x\right)=4m...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 10 2020

Đề bài có vấn đề thì phải, chỗ \(4m^2\) thấy sai sai

NV
12 tháng 10 2020

\(f\left(x\right)=\left(2x-m\right)^2-2m\)

- TH1: \(\frac{m}{2}\in\left[0;2\right]\Rightarrow0\le m\le4\)

Khi đó \(f\left(x\right)_{min}=f\left(\frac{m}{2}\right)=-2m=3\Rightarrow m=-\frac{3}{2}\left(ktm\right)\)

- TH2: \(\frac{m}{2}< 0\Rightarrow f\left(x\right)\) đồng biến trên \(\left[0;2\right]\)

\(\Rightarrow f\left(x\right)_{min}=f\left(0\right)=m^2-2m=3\)

\(\Rightarrow m^2-2m-3=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=3>0\left(l\right)\end{matrix}\right.\)

TH3: \(\frac{m}{2}>2\Leftrightarrow m>4\Rightarrow f\left(x\right)\) nghịch biến trên \(\left[0;2\right]\)

\(\Rightarrow f\left(x\right)_{min}=f\left(2\right)=16-8m+m^2-2m=3\)

\(\Leftrightarrow m^2-10m+13=0\Rightarrow\left[{}\begin{matrix}m=5+2\sqrt{3}\\m=5-2\sqrt{3}< 4\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sum m=-1+5+2\sqrt{3}=\)

28 tháng 12 2018

Đáp án D

NV
21 tháng 4 2021

\(\Leftrightarrow\left(x-y+m\right)^2+y^2+2\left(m+1\right)y-m^2+25\ge0\)\(\forall x;y\)

\(\Leftrightarrow y^2+2\left(m+1\right)y-m^2+25\ge0\) ;\(\forall y\)

\(\Leftrightarrow\Delta'=\left(m+1\right)^2-\left(-m^2+25\right)\le0\)

\(\Leftrightarrow m^2+m-12\le0\Rightarrow-4\le m\le3\)

21 tháng 4 2021

làm sao nhẩm được phần (x-y+m)^2 vậy anh