K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NV
Nguyễn Việt Lâm
Giáo viên
21 tháng 4 2021
\(\Leftrightarrow\left(x-y+m\right)^2+y^2+2\left(m+1\right)y-m^2+25\ge0\); \(\forall x;y\)
\(\Leftrightarrow y^2+2\left(m+1\right)y-m^2+25\ge0\) ;\(\forall y\)
\(\Leftrightarrow\Delta'=\left(m+1\right)^2-\left(-m^2+25\right)\le0\)
\(\Leftrightarrow m^2+m-12\le0\Rightarrow-4\le m\le3\)
Đề bài có vấn đề thì phải, chỗ \(4m^2\) thấy sai sai
\(f\left(x\right)=\left(2x-m\right)^2-2m\)
- TH1: \(\frac{m}{2}\in\left[0;2\right]\Rightarrow0\le m\le4\)
Khi đó \(f\left(x\right)_{min}=f\left(\frac{m}{2}\right)=-2m=3\Rightarrow m=-\frac{3}{2}\left(ktm\right)\)
- TH2: \(\frac{m}{2}< 0\Rightarrow f\left(x\right)\) đồng biến trên \(\left[0;2\right]\)
\(\Rightarrow f\left(x\right)_{min}=f\left(0\right)=m^2-2m=3\)
\(\Rightarrow m^2-2m-3=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=3>0\left(l\right)\end{matrix}\right.\)
TH3: \(\frac{m}{2}>2\Leftrightarrow m>4\Rightarrow f\left(x\right)\) nghịch biến trên \(\left[0;2\right]\)
\(\Rightarrow f\left(x\right)_{min}=f\left(2\right)=16-8m+m^2-2m=3\)
\(\Leftrightarrow m^2-10m+13=0\Rightarrow\left[{}\begin{matrix}m=5+2\sqrt{3}\\m=5-2\sqrt{3}< 4\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sum m=-1+5+2\sqrt{3}=\)