Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi là điểm tiếp xúc của (C), (P) nằm bên phải trục tung. Phương trình tiếp tuyến của (P) tại điểmA là Vì (C), (P) tiếp xúc với nhau tại A nên tA là tiếp tuyến chung tại A của cả (C), (P). Do đó
Vì
Diện tích hình phẳng cần tính bằng diện tích hình phẳng giới hạn bởi
Chọn đáp án D.
Ta cần tìm phương trình của đường tròn:
Vì đường tròn có bán kính bằng 1 và tiếp xúc với trục hoành nên tâm của đường tròn là I(t;1), (t > 0) phương trình của đường tròn là x - 1 2 + y - 1 2 = 1 .
Theo giả thiết đường tròn (C) có chung một điểm AA duy nhất với (P). nên tiếp tuyến tA tại A của (P) cũng là tiếp tuyến của (C).
Xét điểm A a ; 1 2 ; a 2 ,
Ta có hệ điều kiện:
A ∈ ( C ) I A ⊥ t A
Vậy phương trình đường tròn
Diện tích hình phẳng cần tính là
Chọn đáp án D.
Đáp án D.
Phương trình đường tròn tâm O có bán kính R = 2 2 là x 2 + y 2 = 8 .
Ta có parabol và đường tròn như hình vẽ bên.
Giao điểm của parabol và đường tròn là nghiệm của hệ phương trình
x 2 + y 2 = 8 y = x 2 2 ⇔ x = ± 2 y = 2
Vì parabol và đường tròn đều đối xứng qua trục Oy nên ta có
S = 2 ∫ 0 2 8 - x 2 - x 2 2 d x .
Bấm máy tính, ta được kết quả như hình bên. Ta biết S = a π + b c nên ta thao tác tiếp theo trên máy như hình bên.
Vậy ta có S = 2 π + 4 3 . Do đó ta có a = 2 , b = 4 , c = 3 ⇒ a + b + c = 9 . Chọn đáp án D.