\(4cm^2\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2016

Vì AC là đường phân giác của góc A, suy ra đây là tính tình chất của hình vuông(mỗi đường chéo là đường phân giác 1 góc)

-> Tứ giác ABCD là hình vuông

Mà CH vuông góc với AB ->C trùng với B-> CB vuông góc với B

Theo đề, CH = 6 cm hay CB = 6 cm

-> Diện tích tứ giác ABCD là:

S(ABCD)= 6.6 =36(cm^2)

23 tháng 12 2018

Vì AC là đường phân giác của góc A, nên:

\(\Rightarrow\)Tứ giác ABCD là hình vuông.

Mà CH vuông góc với AB:

\(\Rightarrow\)C trùng với B

\(\Rightarrow\)CB vuông góc với B

Theo đề bài, CH = 6cm hay CB = 6cm

\(\Rightarrow\)Diện tích tứ giác ABCD là:

S ( ABCD ) = 6.6 = 36 (cm2)

Đáp số:....

                     

https://olm.vn/hoi-dap/detail/197454392847.html

1 tháng 3 2019

thanhs nhìu bn nha

4 tháng 4 2020

\(S_{ABCD}=S_{AOB}+S_{DOC}+S_{AOD}+S_{BOC}=a^2+b^2+M\)

\(S_{ABCD}\)nhỏ nhất khi M nhỏ nhất

BĐT Cosi \(\left(S_{AOD}+S_{BOC}\right)^2\ge4\cdot S_{AOD}\cdot S_{BOC}\)

\(\Rightarrow\left(\frac{S_{AOD}+S_{BOC}}{2}\right)^2\ge S_{AOD}\cdot S_{BOC}\)(*)

Dấu "=" khi và chỉ khi SAOD=SBOC

Vì \(\Delta\)AOD và \(\Delta\)AOB có chung đường cao kẻ từ A  => \(\frac{S_{AOB}}{S_{AOD}}=\frac{OB}{OD}\left(1\right)\)

Tương tự với \(\Delta COD\)và \(\Delta COB\)=> \(\frac{S_{COB}}{S_{COD}}=\frac{OB}{OD}\left(2\right)\)

Từ (1) và (2) => \(\frac{S_{AOB}}{S_{AOD}}=\frac{S_{COB}}{S_{COD}}\)

\(\Rightarrow S_{AOD}\cdot S_{BOC}=S_{AOB}\cdot S_{COD}=a^2b^2\)

Khi đó (*) => \(\left(\frac{S_{AOD}+S_{BOC}}{2}\right)^2\ge a^2b^2\Rightarrow\frac{S_{AOD}+S_{BOC}}{a}\ge2\left|a\right|\left|b\right|\)

\(\Rightarrow S_{ABCD}=a^2+b^2+M\ge a^2+b^2+2\left|a\right|\left|b\right|=\left(\left|a\right|+\left|b\right|\right)^2\)

Vậy SABCD nhỏ nhất =(|a|+|b|)2 <=> SAOD=SBOC

19 tháng 10 2019

Trong tg ABD có ^DAB=90 (ABCD là HCN)

Ta có OA=OB=OC=OD (O là giao hai đường chéo HCN) => tg AOB cân tại O => ^OAB=^OBA=(180-^AOB)/2 (*)

Mà ^AOB=^DOB-^AOD=180-50=130 thay vào (*) => ^OBA=(180-130)/2=25

=> ^ADB=180-^DAB-^OBA=180-90-25=65

9 tháng 2 2018

Xét tứ giác ABCD có AB cắt CD tại F. E là giao điểm 2 đường chéo tứ giác. G,H thứ tự là trung điểm AC,BD
Ta cần cm SFGH=12SABCDSFGH=12SABCD
SFGH=SFADSFAGSFDHSAGDSDGHSFGH=SFAD−SFAG−SFDH−SAGD−SDGH
=SFAD12(SFAC+SFBD)12SACD12SDGB=SFAD−12(SFAC+SFBD)−12SACD−12SDGB
=SACD+SABC+SFBC12(SABC+SFBC+SDBC+SFBC)12SACD12(SACD+SABCSADGSABGSBDC)=SACD+SABC+SFBC−12(SABC+SFBC+SDBC+SFBC)−12SACD−12(SACD+SABC−SADG−SABG−SBDC)
=12(SADG+SABG)=12.12(SACD+SABC)=14SABCD