Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì AC là đường phân giác của góc A, suy ra đây là tính tình chất của hình vuông(mỗi đường chéo là đường phân giác 1 góc)
-> Tứ giác ABCD là hình vuông
Mà CH vuông góc với AB ->C trùng với B-> CB vuông góc với B
Theo đề, CH = 6 cm hay CB = 6 cm
-> Diện tích tứ giác ABCD là:
S(ABCD)= 6.6 =36(cm^2)
Vì AC là đường phân giác của góc A, nên:
\(\Rightarrow\)Tứ giác ABCD là hình vuông.
Mà CH vuông góc với AB:
\(\Rightarrow\)C trùng với B
\(\Rightarrow\)CB vuông góc với B
Theo đề bài, CH = 6cm hay CB = 6cm
\(\Rightarrow\)Diện tích tứ giác ABCD là:
S ( ABCD ) = 6.6 = 36 (cm2)
Đáp số:....
\(S_{ABCD}=S_{AOB}+S_{DOC}+S_{AOD}+S_{BOC}=a^2+b^2+M\)
\(S_{ABCD}\)nhỏ nhất khi M nhỏ nhất
BĐT Cosi \(\left(S_{AOD}+S_{BOC}\right)^2\ge4\cdot S_{AOD}\cdot S_{BOC}\)
\(\Rightarrow\left(\frac{S_{AOD}+S_{BOC}}{2}\right)^2\ge S_{AOD}\cdot S_{BOC}\)(*)
Dấu "=" khi và chỉ khi SAOD=SBOC
Vì \(\Delta\)AOD và \(\Delta\)AOB có chung đường cao kẻ từ A => \(\frac{S_{AOB}}{S_{AOD}}=\frac{OB}{OD}\left(1\right)\)
Tương tự với \(\Delta COD\)và \(\Delta COB\)=> \(\frac{S_{COB}}{S_{COD}}=\frac{OB}{OD}\left(2\right)\)
Từ (1) và (2) => \(\frac{S_{AOB}}{S_{AOD}}=\frac{S_{COB}}{S_{COD}}\)
\(\Rightarrow S_{AOD}\cdot S_{BOC}=S_{AOB}\cdot S_{COD}=a^2b^2\)
Khi đó (*) => \(\left(\frac{S_{AOD}+S_{BOC}}{2}\right)^2\ge a^2b^2\Rightarrow\frac{S_{AOD}+S_{BOC}}{a}\ge2\left|a\right|\left|b\right|\)
\(\Rightarrow S_{ABCD}=a^2+b^2+M\ge a^2+b^2+2\left|a\right|\left|b\right|=\left(\left|a\right|+\left|b\right|\right)^2\)
Vậy SABCD nhỏ nhất =(|a|+|b|)2 <=> SAOD=SBOC
Trong tg ABD có ^DAB=90 (ABCD là HCN)
Ta có OA=OB=OC=OD (O là giao hai đường chéo HCN) => tg AOB cân tại O => ^OAB=^OBA=(180-^AOB)/2 (*)
Mà ^AOB=^DOB-^AOD=180-50=130 thay vào (*) => ^OBA=(180-130)/2=25
=> ^ADB=180-^DAB-^OBA=180-90-25=65
Xét tứ giác ABCD có AB cắt CD tại F. E là giao điểm 2 đường chéo tứ giác. G,H thứ tự là trung điểm AC,BD
Ta cần cm SFGH=12SABCDSFGH=12SABCD
SFGH=SFAD−SFAG−SFDH−SAGD−SDGHSFGH=SFAD−SFAG−SFDH−SAGD−SDGH
=SFAD−12(SFAC+SFBD)−12SACD−12SDGB=SFAD−12(SFAC+SFBD)−12SACD−12SDGB
=SACD+SABC+SFBC−12(SABC+SFBC+SDBC+SFBC)−12SACD−12(SACD+SABC−SADG−SABG−SBDC)=SACD+SABC+SFBC−12(SABC+SFBC+SDBC+SFBC)−12SACD−12(SACD+SABC−SADG−SABG−SBDC)
=12(SADG+SABG)=12.12(SACD+SABC)=14SABCD