\(\overrightarrow{OA}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2017

A B C D O
\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\left(\overrightarrow{OA}+\overrightarrow{OC}\right)+\left(\overrightarrow{OB}+\overrightarrow{OC}\right)\)
\(=\overrightarrow{0}+\overrightarrow{0}\)(Theo tính chất hình bình hành).
\(=\overrightarrow{0}\) .

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) \(\overrightarrow {OA}  - \overrightarrow {OB}  = \overrightarrow {BA} \)

\(\overrightarrow {OD}  - \overrightarrow {OC}  = \overrightarrow {CD} \)

Do ABCD là hình bình hành nên \(\overrightarrow {BA}  = \overrightarrow {CD} \)

Suy ra, \(\overrightarrow {OA}  - \overrightarrow {OB}  = \overrightarrow {OD}  - \overrightarrow {OC} \)

b)  \(\overrightarrow {OA}  - \overrightarrow {OB}  + \overrightarrow {DC}  = (\overrightarrow {OD}  - \overrightarrow {OC})  + \overrightarrow {DC}  \\= \overrightarrow {CD}  + \overrightarrow {DC} = \overrightarrow {CC} = \overrightarrow 0 \)

12 tháng 5 2017

A B C D O M N E F
a) Giả sử \(\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{OB}+\overrightarrow{OD}\)
\(\Leftrightarrow\overrightarrow{OA}+\overrightarrow{OC}-\overrightarrow{OB}-\overrightarrow{OD}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{OA}+\overrightarrow{BO}+\overrightarrow{OC}+\overrightarrow{DO}=\overrightarrow{0}\)
\(\Leftrightarrow\left(\overrightarrow{BO}+\overrightarrow{OA}\right)+\left(\overrightarrow{DO}+\overrightarrow{OC}\right)=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{BA}+\overrightarrow{DC}=\overrightarrow{0}\) (đúng do tứ giác ABCD là hình bình hành).
b) \(\overrightarrow{ME}+\overrightarrow{FN}=\overrightarrow{MA}+\overrightarrow{AE}+\overrightarrow{FC}+\overrightarrow{CN}\)
\(=\left(\overrightarrow{MA}+\overrightarrow{CN}\right)+\left(\overrightarrow{AE}+\overrightarrow{FC}\right)\).
Do các tứ giác AMOE, MOFB, OFCN, EOND cũng là các hình bình hành.
Vì vậy \(\overrightarrow{CN}=\overrightarrow{FO}=\overrightarrow{BM};\overrightarrow{FC}=\overrightarrow{ON}=\overrightarrow{ED}\).
Do đó: \(\overrightarrow{ME}+\overrightarrow{FN}=\left(\overrightarrow{MA}+\overrightarrow{CN}\right)+\left(\overrightarrow{AE}+\overrightarrow{FC}\right)\)
\(=\left(\overrightarrow{MA}+\overrightarrow{BM}\right)+\left(\overrightarrow{AE}+\overrightarrow{ED}\right)\)
\(=\overrightarrow{BA}+\overrightarrow{AD}=\overrightarrow{BD}\) (Đpcm).

24 tháng 10 2016

câu 2 ( các kí hiệu vecto khi lm bài thỳ b tự viết nhé mk k viết kí hiệu để trả lời cho nhanh hỳ hỳ )

OA+ OB + OC = OA'+ OB' + OC'

<=> OA - OA' + OB - OB' + OC - OC' = 0

<=> A'A + B'B + C'C = 0

<=> 2 ( BA + CB + AC ) = 0

<=> 2 ( CB + BA + AC ) = 0

<=> 2 ( CA + AC ) = 0

<=> 0 = 0 ( luôn đúng )

 

 

24 tháng 10 2016

câu 1 ( các kí hiệu vecto b cx tự viết nhá )

VT = OD + OC = OA + AD + OB + BC = OA + OB + AD + BC = BO + OB + AD + BC = 0 + AD + BC = AD + BC = VP ( đpcm)

12 tháng 5 2017

Do là giao điểm của hai đường chéo hình bình hành nên:
\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\)\(=\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{MO}+\overrightarrow{OC}+\overrightarrow{MO}+\overrightarrow{OD}\)
\(=4\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}\)
\(=4\overrightarrow{MO}\) (ĐPCM).

NV
19 tháng 8 2020

\(\overrightarrow{AC}-\overrightarrow{AD}=\overrightarrow{AC}-\overrightarrow{BC}=\overrightarrow{AC}+\overrightarrow{CB}=\overrightarrow{AB}\)

Đáp án A đúng

AH
Akai Haruma
Giáo viên
1 tháng 10 2020

Lời giải:

Gọi $M,N$ lần lượt là trung điểm $AB, CD$. Ta có:

$\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\overrightarrow{OM}+\overrightarrow{MA}+\overrightarrow{OM}+\overrightarrow{MB}+\overrightarrow{ON}+\overrightarrow{NC}+\overrightarrow{ON}+\overrightarrow{ND}$

$=2\overrightarrow{OM}+2\overrightarrow{ON}=\overrightarrow{0}$

$\Rightarrow \overrightarrow{OM}=-\overrightarrow{ON}$ nên $O$ là trung điểm $MN$

Tam giác $OAB$ cân tại $O$ có $OM$ là trung tuyến đồng thời là đường cao

$\Rightarrow OM\perp AB$. Hoàn toàn tương tự $ON\perp CD$

Mà $O,M,N$ thẳng hàng nên $AB\parallel CD(1)$

Tương tự, đặt $P,Q$ là trung điểm $AD, BC$ ta có:

$AD\paralle BC(2)$

Từ $(1);(2)\Rightarrow ABCD$ là hình bình hành.

$MN$ là đường trung bình của hbh $ABCD$ nên $MN\parallel BC$. Mà ở trên ta chỉ ra $OM\perp AB; O,N,M$ thẳng hàng nên $AB\perp BC$

Hình bình hành $ABCD$ có 2 cạnh kề vuông góc nên là hình chữ nhật.

31 tháng 7 2019

A B D C O / / // // a) Chứng minh \(\overrightarrow{AC}-\overrightarrow{BA}=\overrightarrow{AD}\)

Ta có: \(\overrightarrow{AC}-\overrightarrow{CD}=\overrightarrow{AD}\left(đpcm\right)\) ( vì \(\overrightarrow{BA}=\overrightarrow{CD}\) )

b) Chứng minh \(\left|\overrightarrow{AB}+\overrightarrow{AD}\right|=AC\)

Ta có: \(\overrightarrow{AB}+\overrightarrow{AD}=\overrightarrow{AC}\) ( theo quy tắc hình bình hành )

\(\Rightarrow\left|\overrightarrow{AB}+\overrightarrow{AD}\right|=\left|\overrightarrow{AC}\right|=AC\left(đpcm\right)\)

bài này chả khó áp dụng 1 bước là ra ngay điều cần chứng minh rồi

AH
Akai Haruma
Giáo viên
1 tháng 10 2020

Bạn tham khảo lời giải tại đây:

Câu hỏi của Thư Nguyễn - Toán lớp 10 | Học trực tuyến