Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nha!
a, ta có:
Góc A=Góc D=90°(gt)<=>AD_|_DC
BH_|_DC
=>BH//AD
ABCD là hình thang nên AB//CD
=>Tứ giác ABHD là hình chữ nhật.
b,Do ABHD là hình chữ nhật, nên:
AB=HD=3cm
CD=6cm=>HC=6-3=3 cm
Do BH_|_CD(gt)=>góc BHC=90°
=>tam giác BHC vuông tại H
Xét tam giác vuông BHC:
Theo định lý pitago trong tam giác vuông thì:
BC^2=HC^2+BH^2
=>BH^2=BC^2-HC^2=(5)^2-(3)^2=16
=>BH=4 cm
=>Diện tích hình chữ nhật ABHD là:
3.4=12 cm2
c,Do M là M là trung điểm của BC nên:
MB=MC=BC/2=5/2=2,5cm
Do N đối xứng với M qua E (gt)nên:
EM=EN
Đường chéo AH^2=AD^2+DH^2=25cm
=>AH=5cm=>EH=5/2=2,5cm
=>Tứ giác ABCHH=NMCD vì MC=ND=BC/2=2,5 cm
EM+EN=2AB=6 cm
AB//HC=3cm;BC//AH=5cm
=>NM//DC=6cm
==> Tứ giác NMCD là hình bình hành
d,bạn tự chứng minh (khoai quá)
A B C D M N F E G H I K
Gọi G,H,K lần lượt là trung điểm các cạnh AB,CD,AC. Giao điểm của MG và NH là I.
Ta thấy \(\Delta\)CDN cân tại N có H là trung điểm cạnh CD => NH vuông góc CD => IH vuông góc CD
Mà EK là đường trung bình trong \(\Delta\)ACD nên IH vuông góc EK (1)
Dễ dàng chứng minh tứ giác EHFG là hình thoi => EF vuông góc GH (2)
Từ (1) và (2) suy ra ^IHG = ^KEF (Vì 2 góc này cùng phụ với góc hợp bởi EF và IH)
Tương tự ^IGH = ^KFE. Từ đó \(\Delta\)GIH ~ \(\Delta\)FKE (g.g) => \(\frac{IG}{IH}=\frac{KF}{KE}=\frac{AB}{CD}=\frac{BG}{CH}\)
Ta lại có \(\Delta\)MGB ~ \(\Delta\)NHC (g.g) => \(\frac{BG}{CH}=\frac{MG}{NH}\). Do vậy \(\frac{IG}{IH}=\frac{MG}{NH}\)
Áp dụng ĐL Thales đảo vào \(\Delta\)MIN ta được GH // MN
Mà EF vuông góc GH (cmt) nên EF vuông góc MN (đpcm).
a) Vì ABCD là hình thang
=> BAD + ADC = 180° ( trong cùng phía )
Vì AI là phân giác BAD
=> BAI = DAI = \(\frac{1}{2}BAD\)
Vì BI là phân giác ADC
=> ADI = CDI = \(\frac{1}{2}ADC\)
=> \(\frac{1}{2}ADC\)+ \(\frac{1}{2}BAD\)= 90°
Xét ∆AID có :
IAD + IDA + AID = 180°
=> AID = 180° - 90° = 90°
=> AI \(\perp\)DI
Chứng minh tương tự ta có :
BJ \(\perp\)IC
Ta có
\(MN\perp BC;AB\perp BC\) => MN//AB \(\Rightarrow\frac{MN}{AB}=\frac{CM}{CA}\) (Talet trong tam giác)
\(MP\perp AD;CD\perp AD\) => MP//CD \(\Rightarrow\frac{MP}{CD}=\frac{AM}{CA}\) (Talet trong tam giác)
\(\Rightarrow\frac{MN}{AB}+\frac{MP}{CD}=\frac{CM}{CA}+\frac{AM}{CA}=\frac{CA}{CA}=1\left(dpcm\right)\)
A B C D P M Q N C
Xét Tam giác ABC có: N là trung điểm AC, P là trung điểm của AB
=> PM là đường trung bình của tam giác ABC=> PM//=1/2BC
Tương tự: NQ//=1/2 BC
PN//=1/2 AD
MQ//=1/2AD
Mà BC=AD => PM=NQ=PN=MQ=> Tứ giác MPNQ là hình thoi=> MN vuông góc PQ
bạn tự vẽ hinh nha
1)
Xét tam giác ABC có
hai đường cao BE và CD cắt nhau tại H nên H là trực tâm
do đó \(AH\perp BC\)
mà \(HM\perp BC\)
suy ra AH trùng với HM
vậy A; H; M thẳng hàng
b)
dễ chứng minh tam giác BHM đồng dạng với tam giác BCE \(\Rightarrow\frac{BH}{BC}=\frac{BM}{BE}\Rightarrow BH\cdot BE=BC\cdot BM\left(1\right)\)
dễ chứng minh tam giác CHM đồng dạng với tam giác CBD \(\Rightarrow\frac{CH}{BC}=\frac{CM}{CD}\Rightarrow CH\cdot CD=CM\cdot BC\left(2\right)\)
Từ (1) và (2) suy ra \(BH\cdot BE+CH\cdot CD=BM\cdot BC+CM\cdot BC=\left(BM+CM\right)\cdot BC=BC\cdot BC=BC^2\)
2)
a)
Xét tam giác ABC và tam giác DEC
có \(\widehat{BAC}=\widehat{CDE}\)
\(\widehat{ACB}\)chung
nên tam giác ABC đồng dạng với tam giác DEC
\(\Rightarrow\frac{AB}{DE}=\frac{AC}{CD}\left(1\right)\)
b)
Xét tam giác ABC
có AD là đường phân giác
\(\Rightarrow\frac{BD}{CD}=\frac{AB}{AC}\Rightarrow\frac{AB}{BD}=\frac{AC}{CD}\left(2\right)\)
Từ (1) và (2) suy ra
\(\frac{AB}{DE}=\frac{AB}{BD}\Rightarrow DE=BD\)