Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi (P) là mặt phẳng qua I và vuông góc với d \(\Rightarrow\left(P\right)\) có một vtpt \(\overrightarrow{n_{\left(P\right)}}=\overrightarrow{u_d}=\left(2;-2;1\right)\)
\(\Rightarrow\) phương trình (P): \(2\left(x-4\right)-2\left(y-1\right)+1\left(z-6\right)=0\)
\(\Leftrightarrow2x-2y+z-12=0\)
Gọi M là giao điểm của d và (P) \(\Rightarrow IM\perp d\), pt tham số của d: \(\left\{{}\begin{matrix}x=-2+2t\\y=7-2t\\z=t\end{matrix}\right.\)
Thay vào pt (P) ta được \(2\left(-2+2t\right)-2\left(7-2t\right)+t-12=0\) \(t=\dfrac{10}{3}\)
\(\Rightarrow\) tọa độ \(M\left(\dfrac{14}{3};\dfrac{1}{3};\dfrac{10}{3}\right)\)
\(\Rightarrow IM=\sqrt{\left(4-\dfrac{14}{3}\right)^2+\left(1-\dfrac{1}{3}\right)^2+\left(6-\dfrac{10}{3}\right)^2}=2\sqrt{2}\)
Do d cắt mặt cầu tại A, B nên M là trung điểm của AB \(\Rightarrow MA=\dfrac{AB}{2}=3\)
Trong tam giác \(IMA\) vuông tại M, áp dụng Pitago:
\(R=IA=\sqrt{IM^2+MA^2}=\sqrt{9+8}=\sqrt{17}\)
\(\Rightarrow\) pt mặt cầu (S): \(\left(x-4\right)^2+\left(y-1\right)^2+\left(z-6\right)^2=17\)
Do điểm H thuộc d nên \(H\left(1-t;2t;-3+3t\right)\).
\(\overrightarrow{IH}=\left(4-t;-2+2t-2+3t\right)\)
Đường thẳng d có vectơ chỉ phương \(\overrightarrow{u}=\left(-1;2;3\right)\)
Do H là hình chiếu của I trên đường thẳng d nên:
\(\overrightarrow{IH}\perp\overrightarrow{u}\Rightarrow\overrightarrow{IH}.\overrightarrow{u}=\overrightarrow{0}\\ \Leftrightarrow-4+t-4+4t-6+9t=0\\ \Leftrightarrow14t-14=0\\ \Leftrightarrow t=1\)
Suy ra \(H\left(3;0;1\right)\)
Câu 2 đề thiếu rồi kìa. Cái cuối cùng là tổ hợp chập bao nhiêu của 2n + 1 thế???
1/ Vì M thuộc \(d_3\) nên ta có tọa độ của M là: \(M\left(2a;a\right)\)
Khoản cách từ M đến \(d_1\) là:
\(d\left(M,d_1\right)=\dfrac{\left|2a+a+3\right|}{\sqrt{1^2+1^2}}=\dfrac{\left|3a+3\right|}{\sqrt{2}}\)
Khoản cách từ M đến \(d_2\) là:
\(d\left(M,d_2\right)=\dfrac{\left|2a-a-4\right|}{\sqrt{1^2+1^2}}=\dfrac{\left|a-4\right|}{\sqrt{2}}\)
Theo đề bài ta có:
\(\dfrac{\left|3a+3\right|}{\sqrt{2}}=2.\dfrac{\left|a-4\right|}{\sqrt{2}}\)
\(\Leftrightarrow\left|3a+3\right|=2.\left|a-4\right|\)
\(\Leftrightarrow a^2+10a-11=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=-11\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}M\left(2;1\right)\\M\left(-22;-11\right)\end{matrix}\right.\)
Lời giải:
Phương trình hoành độ giao điểm:
\(x+1-\frac{2x+4}{x-1}=0\)
\(\Leftrightarrow (x+1)(x-1)-(2x+4)=0\)
\(\Leftrightarrow x^2-2x-5=0\) \((1)\)
Với $M,N$ là giao điểm của 2 ĐTHS thì hoành độ của $M,N$ sẽ là hai nghiệm của PT $(1)$
Áp dụng hệ thức Viete, với \(x_M,x_N\) là hai nghiệm của (1) thì:
\(x_M+x_N=2\)
Khi đó, hoành độ của trung điểm $I$ của $MN$ là:
\(x_I=\frac{x_M+x_N}{2}=\frac{2}{2}=1\)
Đáp án B
Cảm ơn ạ