K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2020

Xét 2 tam giác Vuông  BIM và CKM

BM=CM


\(\widehat{BMI}=\widehat{CMK}\)(đối đỉnh)

\(\Rightarrow\) Tam giác BIM= Tam giác CKM(CH-GN)

\(\Rightarrow\)BI=CK( 2 cạnh tương ứng)

#Shinobu Cừu

Xét tam giác BIM và tam giác CKM lần lượt vuông tại T,K có:

\(\hept{\begin{cases}BM=CM\\\widehat{BMI}=\widehat{CMK}\end{cases}}\)

\(\Rightarrow\Delta BIM=\Delta CKM\)(cạnh huyền-góc nhọn)

Suy ra BI=CK(đpcm)

b: Ta có: ΔBAC cân tại A

mà AM là đường phân giác

nên M là trung điểm của BC

27 tháng 12 2021
Giúp mình bài này đi mà :<
7 tháng 7 2017

A B C M H K 1 2

Xét \(\Delta\)BMH và \(\Delta\)CMK có:

Góc BHM = góc CKM = 90 độ ( do BH \(⊥\)AM, CK \(⊥\)AM)

Góc M1 = góc M2 ( đối đỉnh)

BM = CM (M là trung điểm BC)

=> \(\Delta\)BMH = \(\Delta\)CMK (cạnh huyền.góc nhọn)

=> BH = CK (2 cạnh tương ứng) (dpcm)

*Tự vẽ hình 

a) Xét tam giác ABM và ACM, có :

AB=AC(GT)

AM-cạnh chung

BM=MC(GT)

-> Tam giác ABM=ACM(c.c.c)

b) Do tam giác ABM=ACM (cmt)

-> \(\widehat{AMB}=\widehat{AMC}=90^o\)

-> AM vuông góc BC

c) Xét tam giác AEI và MBI, có :

\(\widehat{EAI}=\widehat{BMI}=90^o\)

\(\widehat{AIE}=\widehat{BIM}\left(đđ\right)\)

AI=IM(GT)

-> tam giác AEI=MBI(g.c.g)

-> AE=BM ( đccm)

d) Chịu. Tự làm nhe -_-'

#Hoctot

11 tháng 1 2021

bạn tự vẽ hình

a, xét tam giác ABM và tam giác ACM có :

AB=AC (gt)

MB=MC (gt)

AM là cạch chung

suy ra tam giác ABM =tam giác ACN (c.c.c)

b, Vì tam giác ABM = tam giác ACN (câu a)

suy ra góc M1= góc M2 (2 góc tương ứng)

mà M1+M2=180 ( 2 góc kề bù)

suy ra : M1=M2= 90 

suy ra AM vuông góc BC

c, Vì tam giác ABM = tam giác ACM (câu a)

suy ra : A1=A2 ( 2 góc tương ứng)

suy ra: AM là phân giác góc BAC

b: Ta có: ΔABC cân tại A

mà AE là đường trung tuyến

nên AE là đường cao

a) Xét ∆AMB và ∆AMC có : 

BM =  MC ( M là trung điểm BC )

AM chung 

AB = AC 

=> ∆AMB = ∆AMC (c.c.c)

b) Vì AB = AC 

=> ∆ABC cân tại A 

Mà AM là trung tuyến 

=> AM \(\perp\)BC 

Mà a\(\perp\)AM 

=> a//BC ( từ vuông góc tới song song )

c) Vì CN//AM (gt)

AN//MC ( a//BC , M thuộc BC)

=> ANCM là hình bình hành 

=> NC = AM , AN = MC

Mà AMC = 90° 

=> ANCM là hình chữ nhật 

=> NAM = AMC = MCN =  CNA = 90° 

Xét ∆ vuông NAC và ∆ vuông MCA có : 

AN = MC

AM = CN

=> ∆NAC = ∆MCA (ch-cgv)

d) Vì ANCM là hình chữ nhật (cmt)

=> AC = MN , I là trung điểm 2 đường chéo NM và AC (dpcm)