K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2021

a: \(\overrightarrow{AI}=\dfrac{1}{2}\left(\overrightarrow{AM}+\overrightarrow{AN}\right)=\dfrac{1}{4}\overrightarrow{AB}+\dfrac{1}{4}\overrightarrow{AC}\)

AH
Akai Haruma
Giáo viên
31 tháng 12 2020

Lời giải:

Ta có:

\(\overrightarrow{AB}=\overrightarrow{AM}+\overrightarrow{MB}=\overrightarrow{AM}+\overrightarrow{MN}+\overrightarrow{NB}=\overrightarrow{AM}-\overrightarrow{BN}+\overrightarrow{MN}\)

Vì $AM,BN$ là trung tuyến nên $M,N$ lần lượt là trung điểm của $BC, AC$

$\Rightarrow MN$ là đường trung bình của tam giác $ABC$ ứng với $AB$

\(\Rightarrow \overrightarrow{MN}=\frac{1}{2}\overrightarrow{BA}=-\frac{1}{2}\overrightarrow{AB}\). Do đó:

\(\overrightarrow{AB}=\overrightarrow{AM}-\overrightarrow{BN}-\frac{1}{2}\overrightarrow{AB}\Leftrightarrow \frac{3}{2}\overrightarrow{AB}=\overrightarrow{AM}-\overrightarrow{BN}\)

\(\Leftrightarrow \overrightarrow{AB}=\frac{2}{3}\overrightarrow{AM}-\frac{2}{3}\overrightarrow{BN}\)

AH
Akai Haruma
Giáo viên
31 tháng 12 2020

Hình vẽ:undefined

AH
Akai Haruma
Giáo viên
2 tháng 10 2021

Lời giải:
** Điểm G không có vai trò gì trong bài toán 

\(\overrightarrow{BI}=\overrightarrow{BD}+\overrightarrow{DI}=(\overrightarrow{BA}+\overrightarrow{BC})+\frac{1}{2}\overrightarrow{DC}\)

\(=-\overrightarrow{AB}+\overrightarrow{AD}+\frac{1}{2}\overrightarrow{AB}=\overrightarrow{AD}-\frac{1}{2}\overrightarrow{AB}\)

26 tháng 10 2021

\(\overrightarrow{BG}=\dfrac{2}{3}\overrightarrow{BM}=\dfrac{2}{3}\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{BC}\)

22 tháng 10 2021

Bài 1: 

Gọi M là trung điểm của AD

\(BM=\sqrt{AB^2+AM^2}=\sqrt{4a^2+\dfrac{1}{4}a^2}=\dfrac{\sqrt{17}}{2}a\)

\(\left|\overrightarrow{AB}+\overrightarrow{DB}\right|=2\cdot BM=\sqrt{17}a\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Cách 1:

Gọi O là giao điểm của AC và BD.

 

Ta có:

\(\begin{array}{l}\overrightarrow {AG}  = \overrightarrow {AB}  + \overrightarrow {BG}  = \overrightarrow a  + \overrightarrow {BG} ;\\\overrightarrow {CG}  = \overrightarrow {CB}  + \overrightarrow {BG}  = \overrightarrow {DA}  + \overrightarrow {BG}  = - \overrightarrow b  + \overrightarrow {BG} ;\end{array}\)(*)

Lại có: \(\overrightarrow {BD} =\overrightarrow {BA}  + \overrightarrow {AD} =  - \overrightarrow a  + \overrightarrow b \).

\(\overrightarrow {BG} ,\overrightarrow {BD} \) cùng phương và \(\left| {\overrightarrow {BG} } \right| = \frac{2}{3}BO = \frac{1}{3}\left| {\overrightarrow {BD} } \right|\)

\( \Rightarrow \overrightarrow {BG}  = \frac{1}{3}\overrightarrow {BD}  = \frac{1}{3}\left( { - \overrightarrow a  + \overrightarrow b } \right)\)

Do đó (*) \( \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {AG}  = \overrightarrow a  + \overrightarrow {BG}  = \overrightarrow a  + \frac{1}{3}\left( { - \overrightarrow a  + \overrightarrow b } \right) = \frac{2}{3}\overrightarrow a  + \frac{1}{3}\overrightarrow b ;\\\overrightarrow {CG}  = -\overrightarrow b  + \overrightarrow {BG}  = -\overrightarrow b  + \frac{1}{3}\left( { - \overrightarrow a  + \overrightarrow b } \right) =  - \frac{1}{3}\overrightarrow a  - \frac{2}{3}\overrightarrow b ;\end{array} \right.\)

Vậy \(\overrightarrow {AG}  = \frac{2}{3}\overrightarrow a  + \frac{1}{3}\overrightarrow b ;\;\overrightarrow {CG}  =  - \frac{1}{3}\overrightarrow a  - \frac{2}{3}\overrightarrow b .\)

24 tháng 9 2023

Cách 2:

Gọi AE, CF là các trung tuyến trong tam giác ABC.

Ta có: 

\(\overrightarrow {AG}  = \frac{2}{3}\overrightarrow {AE}  = \frac{2}{3}.\frac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right) = \frac{2}{3}.\frac{1}{2}\left[ {\overrightarrow {AB}  + \left( {\overrightarrow {AB}  + \overrightarrow {AD} } \right)} \right] \\= \frac{1}{3}\left( {2\overrightarrow a  + \overrightarrow b } \right) = \frac{2}{3}\overrightarrow a  + \frac{1}{3}\overrightarrow b \)

\(\overrightarrow {CG}  = \frac{2}{3}\overrightarrow {CF}  = \frac{2}{3}.\frac{1}{2}\left( {\overrightarrow {CA}  + \overrightarrow {CB} } \right) = \frac{2}{3}.\frac{1}{2}\left[ {\left( {\overrightarrow {CB}  + \overrightarrow {CD} } \right) + \overrightarrow {CB} } \right] = \frac{1}{3}\left( {2\overrightarrow {CB}  + \overrightarrow {CD} } \right) = \frac{1}{3}\left( { - 2\overrightarrow {AD}  - \overrightarrow {AB} } \right) =  - \frac{1}{3}\overrightarrow a  - \frac{2}{3}\overrightarrow b \)

Vậy \(\overrightarrow {AG}  = \frac{2}{3}\overrightarrow a  + \frac{1}{3}\overrightarrow b ;\;\overrightarrow {CG}  =  - \frac{1}{3}\overrightarrow a  - \frac{2}{3}\overrightarrow b .\)