K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2022

Bài 2:

a: Vì AM<ÂN

nên điểm M nằm giữa hai điểm A và N

b: MN=AN-AM=5cm

c: PM=PA+AM=3+2=5cm

d: VìMP=MN

và P,M,N thẳng hàng

nên M là trung điểm của PN

26 tháng 8 2019

Đáp án D

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Các vectơ đó là: \(\overrightarrow {MI} ,\overrightarrow {IM} ,\overrightarrow {IN} ,\overrightarrow {NI} ,\overrightarrow {MN} ,\overrightarrow {NM} \).

b) Dễ thấy:

+) vectơ \(\overrightarrow {IN} \)cùng hướng với vectơ \(\overrightarrow {MI} \). Hơn nữa: \(|\overrightarrow {IN} |\; = IN = MI = \;|\overrightarrow {MI} |\)

\( \Rightarrow \overrightarrow {IN}  = \overrightarrow {MI} \)

+) vectơ \(\overrightarrow {IM} \)cùng hướng với vectơ \(\overrightarrow {NI} \). Hơn nữa: \(|\overrightarrow {IM} |\; = IM = NI = \;|\overrightarrow {NI} |\)

\( \Rightarrow \overrightarrow {IM}  = \overrightarrow {NI} \)

Vậy \(\overrightarrow {IN}  = \overrightarrow {MI} \) và \(\overrightarrow {IM}  = \overrightarrow {NI} \).

Bài 1: Cho đường tròn (I; R) nội tiếp tam giác ABC tiếp xúc với BC tại D. Gọi M và N lần lượt là trung điểm của AD và BC. Chứng minh M, I, N thẳng hàng Bài 2: cho đường tròn tâm O và 3 dây cung song song với nhau là AA', BB', CC'. Chứng minh rằng trực tâm các tam giác ABC'; BCA' và CAB' cùng nằm trên 1 đường thẳng Bài 3: Trên đường thẳng a cho các điểm A, B, C và trên đường thẳng b cho M, N, P thỏa mãn...
Đọc tiếp

Bài 1: Cho đường tròn (I; R) nội tiếp tam giác ABC tiếp xúc với BC tại D. Gọi M và N lần lượt là trung điểm của AD và BC. Chứng minh M, I, N thẳng hàng

Bài 2: cho đường tròn tâm O và 3 dây cung song song với nhau là AA', BB', CC'. Chứng minh rằng trực tâm các tam giác ABC'; BCA' và CAB' cùng nằm trên 1 đường thẳng

Bài 3: Trên đường thẳng a cho các điểm A, B, C và trên đường thẳng b cho M, N, P thỏa mãn vectoAB=k. vectoAC và vectoMN=k. vectoMP (k khác 1). Giả sử X, Y, Z là các điểm chia các đoạn thẳng AM, BN và CP theo cùng 1 tỉ số. CMR: X, Y, Z thẳng hàng

Bài 4: Cho góc xOy và 2 điểm M, N di chuyển trên 2 cạnh Ox, Oy thỏa mãn OM=2ON.
a)) CMR: trung điểm I của MN luôn thuộc 1 đường thẳng cố định
b)) Nghiên cứu trường hợp giả thiết thay OM=2ON thành OM=mON với m là 1 hằng số cố định
c)) Nghiên cứu trường hợp thay giả thiết I là trung điểm MN thành giả thiết I là điểm chia MN theo tỉ số k cố định. (toán lớp 10 ạ)

0

a: Xét tứ giác ABOC có 

\(\widehat{ABO}+\widehat{ACO}=180^0\)

nên ABOC là tứ giác nội tiếp(1)

b: Xét tứ giác OEAC có 

\(\widehat{OEA}+\widehat{OCA}=180^0\)

Do đó: OEAC là tứ giác nội tiếp(2)

Từ (1) và (2) suy ra O,E,B,A,C cùng thuộc một đường tròn

c: \(\widehat{BIC}=\dfrac{sđ\stackrel\frown{BC}}{2}=\dfrac{\widehat{BOC}}{2}\)

mà \(\widehat{AOC}=\dfrac{\widehat{BOC}}{2}\)

nên \(\widehat{BIC}=\widehat{AOC}\)

8 tháng 8 2019

Tọa độ điểm I của đoạn thẳng MN là:

x I = x M + ​ x N 2 = 0 + ​ ( − 3 ) 2 = − 3 2 y I = y M + ​ y N 2 = 4 + ​ 2 2 = 3 ⇒ I − 3 2 ;    3

Đáp án C