Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hoành độ giao điểm là nghiệm của pt
\(x^3-3mx^2+3\left(2m-1\right)x+1=2mx-4m+3\Leftrightarrow x^3-3mx^2+4mx-3x-2+4m=0\Leftrightarrow x^3-3x-2-m\left(3x^2-4x+4\right)=0\)
giải hệ pt ta có \(C_m\) luôn đi qua điểm A là nghiệm của hệ pt sau
\(\begin{cases}3x^2-4x+4=0\\x^3-3x-2=0\end{cases}\)
ta đc điều phải cm
Ta có:
\(f\left(1\right).f\left(-1\right)=\left(a+b\right).\left(-a+b\right)\)
\(\Rightarrow\left(a+b\right)\left(-a+b\right)=\left(a+b\right)^2\)
\(\Rightarrow-a+b=a+b\)
\(\Rightarrow a=-a\)
\(a\ne0\) thì làm sao có a thỏa mãn được?
Trần Thùy Dung ko biết thì đừng có làm. 5 - 3a - 3b = 5. Bài này trong violympic.
Cho hàm số y=x3−3m2x2+m. Tìm m
để đồ thị hàm số có cực đại, cực tiểu.
- m≠0
- m>0 (chọn câu này là thành câu trắc nghiệm hoàn chỉnh nhé hoc24)
- m<0
- m=0
Cho em hỏi em có được 3GP không ạ !
vì đồ thị hàm số đi qua điểm \(A\left(-1;\frac{5}{2}\right)\) nên tọa độ của A thỏa mãn phương trình sau: \(\frac{a+b}{-2}=\frac{5}{2}\Rightarrow a+b=-5\)(*)
ta tính y' có:
\(y'=\frac{\left(2ax-b\right)\left(x-1\right)-\left(ax^2-bx\right)}{\left(x-1\right)^2}=\frac{2ax^2-2ax-bx+b-ax^2+bx}{\left(x-1\right)^2}=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\)
vì hệ số góc của tiếp tuyến tại điểm O(0;0) bằng 3 nên \(y'\left(O\right)=\frac{b}{\left(0-1\right)^2}=-3\Rightarrow b=-3\)
thay b=-3 vào (*) ta tìm được a=-2
vậy a=-2;b=-3
Đa thứ f(x) có dạng : ax2+bx+c
Theo đề ta có: 25a+5b+c=25a-5b+c
<=>5b=-5b
=>b=0
Do đó f(x) phải có dạng ax2+c
Ta thấy ax2+c=a.(-x)2+c
=>f(x)=f(-x) với mọi x thuộc R
vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)
vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3
ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2
vậy ta tìm đc a và b
Từ \(f\left(x\right)+f\left(\frac{1}{x}\right)=x^2\); lần lượt thay \(x=2\) và \(x=\frac{1}{2}\) vào, ta có:
\(f\left(2\right)+3f\left(\frac{1}{2}\right)=4\) và \(f\left(\frac{1}{2}\right)+3f\left(2\right)=\frac{1}{4}\Leftrightarrow3f\left(2\right)+f\left(\frac{1}{2}\right)=\frac{1}{4}\)
Giải hệ phương trình với 2 ẩn \(f\left(2\right)\) và \(f\left(\frac{1}{2}\right)\)
Tìm được \(f\left(2\right)=\frac{-13}{32}\)
Ta có \(f\left(x\right)+3f\left(\frac{1}{x}\right)=x^2\) (1)
Thay \(x\rightarrow\frac{1}{x}\) được \(f\left(\frac{1}{x}\right)+3f\left(x\right)=\frac{1}{x^2}\)
\(\Leftrightarrow3f\left(\frac{1}{x}\right)+9f\left(x\right)=\frac{3}{x^2}\) (2)
Lấy (2) trừ (1) theo vế : \(8f\left(x\right)=\frac{3}{x^2}-x^2\)
\(\Leftrightarrow f\left(x\right)=\frac{1}{8}\left(\frac{3}{x^2}-x^2\right)\)
Vậy f(2) = -13/32
đây là dạng bài viết phương trình tiếp tuyến đi qua 1 điểm
cách làm tương tự như trên
ta tính \(y'=4x^3-4x=4x\left(x^2-1\right)\)
gọi \(A\left(a,b\right)\) là tọa độ tiếp điểm ta có \(y'\left(a\right)=4a^3-4a=4a\left(a^2-1\right)\)
phương trình tiếp tuyến tại A là \(y=4a\left(a^2-1\right)\left(x-a\right)+b\)(*)
vì tiếp tuyến qua điểm \(A\left(0;2\right)\)
suy ra \(a,b\) là nghiệm của hệ pt
\(\begin{cases}b=a^4-2a^2+2\\2=4a\left(a^2-1\right)\left(0-a\right)+b\end{cases}\)
gải hệ pt ta đc \(a=0;a=\pm\sqrt{\frac{2}{3}}\)
thay \(a,b\) vào pt (*) trên ta đc 3 tiếp tiếp cần tim
Ta biến đổi :
\(f\left(x\right)=\cos3x\cos5x=\frac{\cos5x+\cos2x}{2}=\frac{1}{2}\cos8x+\frac{1}{2}\cos2x\)
Khi đó :
\(I=\int f\left(x\right)dx=\frac{1}{2}\int\cos8xdx+\frac{1}{2}\int\cos2xdx=\frac{1}{16}\sin8x+\frac{1}{4}\sin2x+C\)