\(\le\)2R

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2021

Vì dây lớn nhất trong đường tròn là đường kính nên \(AB\le2R\)

24 tháng 8 2017

Cho đường tròn tâm O , đường kính AB các dây AC,AD . Gọi E là điểm bất kỳ trên đường tròn .H,K theo thứ tự là hình chiếu của E trên AC,AD . CMR :  \(HB\le AB\)

Cho đường tròn tâm O , đường kính AB các dây AC,AD . Gọi E là điểm bất kỳ trên đường tròn .H,K theo thứ tự là hình chiếu của E trên AC,AD . CMR :  \(HB\le AB\)

Bài này khó lắm

mik mới chỉ lớp 7 thôi

làm sao đc bài này

mik ....

.....s...o...r.....r.......y

22 tháng 7 2019

Bài này là bài 56 trang 98 của cuốn sách NÂNG CAO VÀ PHÁT TRIỂN TOÁN 9 TẬP 1 CỦA VŨ HỮU BÌNH nha.

11 tháng 4 2020

*Mình vẽ hình trên GeoGebra nên bạn vào thống kê mình xem*

Xét \(\Delta IDC\) và \(\Delta\)IAB có:

\(\widehat{DIC}=\widehat{AIB}\) (đối đỉnh)

\(\widehat{IDC}=\widehat{IAB}\) (cùng chắn cung BC)

Do đó \(\Delta IDC\)đồng dạng với \(\Delta\)IAB => \(\frac{ID}{IA}=\frac{IC}{IB}=\frac{CD}{AB}\left(1\right)\)

Tương tự ta có: \(\Delta\)IAD đồng dạng \(\Delta\)IBC => \(\frac{IA}{IB}=\frac{ID}{IC}=\frac{DA}{BC}\left(2\right)\)

Từ (1) và (2) ta có: \(\frac{ID}{IB}=\frac{ID}{IA}\cdot\frac{IA}{IB}=\frac{DA\cdot CD}{AB\cdot BC}\)

\(\Rightarrow\frac{ID+IB}{IB}=\frac{AB\cdot BC+DA\cdot CD}{AB\cdot BC}\) hay \(BD=\frac{AB\cdot BC+DA\cdot CD}{AB\cdot BC}\cdot IB\)

mặt khác  ta có: \(\frac{IC}{IA}=\frac{IC}{IB}:\frac{IA}{IB}=\frac{BC\cdot CD}{AB\cdot DA}\Rightarrow\frac{IC+IA}{IA}=\frac{AB\cdot DA+BC\cdot CD}{AB\cdot DA}\)

\(\Rightarrow AC=\frac{AB\cdot DA+BC\cdot CD}{AB\cdot DA}\cdot IA\)

Do đó: \(\frac{AC}{BD}=\left(\frac{AB\cdot DA+BC\cdot CD}{AB\cdot DA}\cdot IA\right):\left(\frac{AB\cdot BC+DA\cdot CB}{AB\cdot BC}\cdot IB\right)\Rightarrow\frac{AC}{BD}=\frac{AB\cdot DA+BC\cdot CD}{AB\cdot BC+DA\cdot CD}\)

Do đó:

\(\frac{AB\cdot DA+BC\cdot CD}{AB\cdot BC+DA\cdot CD}\left(max\right)\Leftrightarrow\hept{\begin{cases}AC\left(max\right)\\BD\left(min\right)\end{cases}}\)<=> AC qua O và BD _|_ OI

\(\frac{AB\cdot DA+BC\cdot CD}{AB\cdot BC+DA\cdot CD}\left(min\right)\Leftrightarrow\hept{\begin{cases}AC\left(min\right)\\BD\left(max\right)\end{cases}}\)<=> AC _|_OI vfa BD đi qua O

9 tháng 10 2019

B C A H m

Do A thuộc đường tròn dk BC -> AB vuông góc với AC

Ta có: BAH và ACI cùng phụ với ABC -> BAH = ACI (1)

Dễ dàng CM dc tam giác ABC đồng dạng với tam giác HAC -> AB/AH = AC/HC -> AB.CH = AH.AC <=> (2.AB.)(1/2.CH) = AH.AC

<=> AM.CI = AH.AC <=> AM/AH = AC/CI (2)

Từ (1),(2) -> Tam giác AHM đồng dạng tam giác CIA

18 tháng 2 2020

A B D C P S H O Q R

a ) Theo định lí Py - ta - go

\(HA^2+HB^2=AB^2;HC^2+HB^2=BC^2;HC^2+HD^2=CD^2;HA^2+HD^2=AD^2\)

\(\Rightarrowđpcm\)

b ) Tứ giác \(HPBS\)nội tiếp \(\Rightarrow\widehat{HPS}=\widehat{HBS}=\widehat{DBC}\)

Tứ giác HPAQ là hình chữ nhật \(\Rightarrow\widehat{HPQ}=\widehat{HAQ}=\widehat{CAD}=\widehat{CBD}\)

Do đó : \(\widehat{SPQ}=\widehat{HPS}+\widehat{HPQ}=2\widehat{CBC}\)

Tương tư : \(\widehat{SQR}=2\widehat{BDC}\)

Do đó : \(\widehat{DBC}+\widehat{BDC}=180^0\)

\(\Leftrightarrow\widehat{SPQ}+\widehat{SRQ}=180^0\) nên tứ giác PQRS nội tiếp ( đ/lí
đảo)

Chúc bạn học tốt !!!