Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nghiệm a si đa quá ._.
\(\sqrt{2}x^2+x-1=0\)
\(\Delta=1^2-\left(4\sqrt{2}-1\right)=\sqrt{32}+1\)
\(\Rightarrow x_{1,2}=\frac{-1\pm\sqrt{\sqrt{32}+1}}{2\sqrt{2}}\).....
Thay \(\sqrt{2}a^2=1-a\ge\)0 suy ra a <=1 tính được mẫu = \(-\sqrt{2}\left(2a-3\right)\)
ta có :
\(\sqrt{2}a^2+a-1=0\Leftrightarrow\sqrt{2}a^2=1-a\) nên ta có \(a\le1\)
\(\Rightarrow2a^4=a^2-2a+1\)Vậy \(C=\frac{2a-3}{\sqrt{2\left(a^2-4a+4\right)}+2a^2}=\frac{2a-3}{2a^2+\sqrt{2}\left(2-a\right)}=\frac{2a-3}{\sqrt{2}\left(\sqrt{2}a^2-a+2\right)}\)
\(=\frac{2a-3}{\sqrt{2}\left(1-a-a+2\right)}=\frac{2a-3}{\sqrt{2}\left(3-2a\right)}=-\frac{1}{\sqrt{2}}\)
a) a là 1 nghiệm \(\Rightarrow\sqrt{2}a^2+a-1=0\Leftrightarrow2a^4=\left(1-a\right)^2=a^2-2a+1\)
\(\Rightarrow2a^4-2a+3=a^2-2a+1-2a+3=\left(a-2\right)^2\)
\(\sqrt{2\left(2a^4-2a+3\right)}+2a^2=\sqrt{2}\left(a-2\right)+2a^2\)(1)
mà \(\sqrt{2}a^2+a-1=0\Rightarrow2a^2+\sqrt{2}a-\sqrt{2}=0\)
(1)= \(2a^2+\sqrt{2}a-2\sqrt{2}=-\sqrt{2}\)
...
b) find nghiệm nguyên dương:
\(Pt\Leftrightarrow x^2+2y^2+2xy-2\left(x+2y\right)+1=0\)
\(\Leftrightarrow x^2+2x\left(y-1\right)+\left(2y^2-4y+1\right)=0\)\(\Delta'=\left(y-1\right)^2-\left(2y^2-4y+1\right)=-y^2+2y\ge0\)
\(\Leftrightarrow0\le y\le2\) kết hợp \(y\in N\)=> ....
\(\sqrt{\frac{-6}{1+x}}=5\)
\(\Leftrightarrow\sqrt{\frac{-6}{1+x}}^2=5^2\)
\(\Leftrightarrow\frac{-6}{1+x}=25\)
\(\Leftrightarrow x+1=\frac{-6}{25}\)
\(\Leftrightarrow x=\frac{-6}{25}-1=\frac{-31}{25}\)
\(\sqrt{\left(\sqrt{x}-7\right)\left(\sqrt{x}+7\right)}=2\)
\(\Leftrightarrow\sqrt{x-49}=2\)
\(\Leftrightarrow x-49=4\Leftrightarrow x=53\)
2a^4=(1-a)^2=a^2-2a+1
\(A=\frac{2a-3}{\sqrt{2\left(a^2-4a+4\right)}+2a^2}=\frac{2a-3}{\sqrt{2}!\left(a-2\right)!+2a^2}\)a> 2 không thể là nghiệm=> a<2
\(A=\frac{2a-3}{\sqrt{2}\left(2-a\right)+2a^2}=\frac{2a-3}{2a^2-\sqrt{2}a+2\sqrt{2}}=\frac{2a-3}{\sqrt{2}\left(\sqrt{2}a^2-a-1+3\right)}\)
\(A=\frac{2a-3}{\sqrt{2}\left(3\right)}\)
bạn giải thích rõ hơn được không ?