Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề sai. Giả sử tam giác là tam giác đều thì ta có:
\(tan\left(30\right)+tan\left(30\right)=\frac{2\sqrt{3}}{3}>\frac{\sqrt{3}}{3}=tan\left(30\right)\)
Nếu nó đều thì bất đẳng thức bị sai là sao dùng bất đẳng thức đó để chứng minh nó đều được.
Sửa đề:
\(\hept{\begin{cases}tan\frac{A}{2}+tan\frac{B}{2}\le2tan\frac{C}{2}\left(1\right)\\cot\frac{A}{2}+cot\frac{B}{2}\le2cot\frac{C}{2}\left(2\right)\end{cases}}\)
\(\left(2\right)\Leftrightarrow\frac{1}{tan\frac{A}{2}}+\frac{1}{tan\frac{B}{2}}\le\frac{2}{tan\frac{C}{2}}\le\frac{4}{tan\frac{A}{2}+tan\frac{B}{2}}\)
\(\Leftrightarrow\left(tan\frac{A}{2}+tan\frac{B}{2}\right)^2\le4tan\frac{A}{2}.tan\frac{B}{2}\)
\(\Leftrightarrow\left(tan\frac{A}{2}-tan\frac{B}{2}\right)^2\le0\)
Dấu = xảy ra khi \(tan\frac{A}{2}=tan\frac{B}{2}\)
\(\Rightarrow A=B\)
Thế lại hệ ban đầu ta được
\(\hept{\begin{cases}2tan\frac{A}{2}\le2tan\frac{C}{2}\\2cot\frac{A}{2}\le2cot\frac{C}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}tan\frac{A}{2}\le tan\frac{C}{2}\\tan\frac{A}{2}\ge tan\frac{C}{2}\end{cases}}\)
Dấu = xảy ra khi \(A=C\)
Vậy ta có được \(A=B=C\) nên tam giác ABC là tam giác đều.
A B C D E H
trong tam giac ABD ta co \(\tan B=\frac{AD}{BD}\)
ADC co \(\tan C=\frac{AD}{CD}\)
suy ra \(\tan B\cdot\tan C=\frac{AD^2}{BD\cdot CD}\) (1)
\(\Delta BDH~\Delta ADC\left(g.g\right)\)\(\Rightarrow\frac{DH}{DC}=\frac{DB}{AD}\Rightarrow BD\cdot DC=DH\cdot AD\)(2)
tu (1)(2) \(\Rightarrow\tan B\cdot\tan C=\frac{\left(2DH\right)^2}{DH\cdot2DH}=2\)
trong tam giac ABD ta co tanB=ADBD
ADC co tanC=ADCD
suy ra tanB·tanC=AD2BD·CD (1)
ΔBDH~ΔADC(g.g)⇒DHDC =DBAD ⇒BD·DC=DH·AD(2)
tu (1)(2) ⇒tanB·tanC=(2DH)2DH·2DH =2
A B C E D H K
a/ Áp dụng định lý Pytago:
\(\frac{AC^2+CB^2-BA^2}{CB^2+BA^2-AC}=\frac{AK^2+KC^2+\left(BK^2++CK^2\right)-AB^2}{\left(BK+CK\right)^2+BA^2-\left(AK+KC\right)^2}\)
\(=\frac{2CK^2+2BK.CK}{2BK^2+2BK.CK}=\frac{2CK\left(CK+BK\right)}{2BK\left(BK+CK\right)}=\frac{CK}{BK}\)
b ) Ta có :
\(\tan B=\frac{AK}{BK}\) ; \(\tan C=\frac{AK}{CK}\)
Nên \(\tan B.\tan C=\frac{AK^2}{BK.CK}\left(1\right)\)
Mặt khác ta có : \(B=HKC\)mà : \(tanHKC=\frac{KC}{KH}\)
Nên \(\tan B=\frac{KC}{KH}\)tương tự \(tanC=\frac{KB}{KH}\)
\(\Rightarrow\tan B.\tan C=\frac{KB.KC}{KH^2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\left(\tan B.\tan C\right)^2=\left(\frac{AK}{KH}\right)^2\)
Theo bài ra có : \(HK=\frac{1}{3}AK\Rightarrow\tan B.\tan C=3\)
c ) c/ Ta chứng minh được: 2 tam giác ABC và ADE đồng dạng nên :
\(\frac{S_{ABC}}{S_{ADE}}=\left(\frac{AB}{AD}\right)^2\left(3\right)\)
Mà góc BAC = 60 0 nên \(\widehat{ABD}=30^0\)
\(\Rightarrow AB=2AD\left(4\right)\)
Từ (3) và (4 ) ta có : \(\frac{S_{ABC}}{S_{ADE}}=4\Rightarrow S_{ADE}=30\left(cm^2\right)\)
Chúc bạn học tốt !!!