Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a . dễ c/m được tam giác AOF đồng dạng với ADB(gg)
b. Dễ c/m được tứ giác BHKD nt do DKB=DHB=90 cùng nhìn cạnh BD
nên DHK=KBD(cùng nhìn cạnh DK)
mà DCB=DBK(cùng phụ với KBC)
từ đó ta được DHK=DCO hay tứ giác KHOC nt
c, theo mk câu c sai đề vì nếu cần c.m \(\frac{BD}{DM}-\frac{DM}{AM}=1\Leftrightarrow DB\cdot AM=DM^2+DM\cdot AM=DM\left(AM+DM\right)=DM\cdot AD\)
(đến đây vẫn đúng nha bạn)
ta thấy AMC đồng dạng với ADB hay \(\frac{AM}{AD}=\frac{MC}{DB}\Rightarrow AM\cdot BD=CM\cdot AD\)\(\Rightarrow CM\cdot AD=DM\cdot AD\Leftrightarrow CM=DM\)(vô lý )
nên mk cho là đề sai nếu mk có sai bạn chỉ mk vs ạ
Câu này khá dễ bạn ạ
Tứ giác ABDF nội tiếp vì có BAF+FDB=180 (mà 2 góc đối nhau)
Tứ giác ADCE nội tiếp vì CAE=EDC=90(mà 2 góc cùng nhìn cạnh EC)
ABC=AFE (cùng phụ với BED)
AM là tiếp tuyến nên MAO=90
mà BAC=90 nên BAO=FAM(cùng phụ với OAC)
mặt khác AB=OA=OB=R(gt)
nên tam giác OAB đều mà ABO=MFA,MÀ=BAO nên tam giác AMF đều
a, xét tứ giác AIHM có:
MI vuông góc vs AB=>góc MIA=900
BH vuông góc vs AC=>góc AHM=900
=>góc AIM=AHM
=>tứ giác AIHM nt
=>I,A,H,M cùng thuộc 1 đường tròn
B đỉnh trùng vs