\(x^2-3x-2=(x-1)\sqrt{2x+1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2018

Bình phương 2 vế được

(x2 - 6x - 3)(x2 - 2x - 1) = 0

PS: Mấy cái điều kiện thì tự làm nha

22 tháng 7 2018

điều kiện \(x\ge\dfrac{-1}{2}\)

ta có : \(x^2-3x-2=\left(x-1\right)\sqrt{2x+1}\)

\(\Leftrightarrow\left(x^2-3x-2\right)^2=\left(x^2-2x+1\right)\left(2x+1\right)\)

\(\Leftrightarrow x^4+9x^2+4-6x^3+12x-4x^2=2x^3+x^2-4x^2-2x+2x+1\)

\(\Leftrightarrow x^4-8x^3+8x^2+12x+3=0\)

\(\Leftrightarrow x^4-2x^3-x^2-6x^3+12x^2+6x-3x^2+6x+3=0\)

\(\Leftrightarrow x^2\left(x^2-2x-1\right)-6x\left(x^2-2x-1\right)-3\left(x^2-2x-1\right)=0\)

\(\Leftrightarrow\left(x^2-2x-1\right)\left(x^2-6x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1-\sqrt{2}\\x=1+\sqrt{2}\\x=3+2\sqrt{3}\\x=3-2\sqrt{3}\end{matrix}\right.\) nhận hết .

vậy ......................................................................................................................

NV
27 tháng 6 2019

Bạn coi lại đề câu a và câu c

b/ Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+3x+5}=a>0\\\sqrt{2x^2-3x+5}=b>0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=6x\Rightarrow3x=\frac{a^2-b^2}{2}\)

Phương trình trở thhành:

\(a+b=\frac{a^2-b^2}{2}\Leftrightarrow2\left(a+b\right)=\left(a+b\right)\left(a-b\right)\)

\(\Leftrightarrow a-b=2\Rightarrow a=b+2\)

\(\Leftrightarrow\sqrt{2x^2+3x+5}=\sqrt{2x^2-3x+5}+2\)

\(\Leftrightarrow2x^2+3x+5=2x^2-3x+5+4+4\sqrt{2x^2-3x+5}\)

\(\Leftrightarrow3x-2=2\sqrt{2x^2-3x+5}\) (\(x\ge\frac{2}{3}\))

\(\Leftrightarrow9x^2-12x+4=4\left(2x^2-3x+5\right)\)

\(\Leftrightarrow x^2=16\Rightarrow x=4\)

27 tháng 6 2019

@Akai Haruma, @Nguyễn Việt Lâm, @Nguyễn Thị Diễm Quỳnh, @Hoàng Tử Hà, @Bonking

Giúp mk vs!khocroi

26 tháng 7 2018

\(A=3\sqrt{8}-\sqrt{50}-\sqrt{\sqrt{2}-1}\)

\(\Leftrightarrow6\sqrt{2}-5\sqrt{2}-\sqrt{\sqrt{2}-1}\)

\(\Leftrightarrow\sqrt{2}-\sqrt{\sqrt{2}-1}\)

\(B=2.\dfrac{2}{x-1}.\sqrt{\dfrac{x^2-2x+1}{4x^2}}\)

\(\Leftrightarrow\)\(\dfrac{2}{x-1}.\dfrac{\sqrt{x^2-2x+1}}{2x}\)

\(\Leftrightarrow\)\(\dfrac{2}{x-1}.\dfrac{\sqrt{\left(x-1\right)^2}}{x}\)

\(\Leftrightarrow\)\(\dfrac{2}{x-1}.\dfrac{x-1}{x}\)

\(\Leftrightarrow\)\(2.\dfrac{1}{x}\)

\(\Leftrightarrow\)\(\dfrac{2}{x}\)