Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ko có chuyện chia mà được thương và số dư bằng nhau đâu bạn ạ
Từ đề bài ta có:
\(T=\dfrac{1+2}{2}.\dfrac{1+3}{3}.\dfrac{1+4}{4}...\dfrac{1+98}{98}.\dfrac{1+99}{99}\)
\(=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}...\dfrac{99}{98}.\dfrac{100}{99}\)
\(=\dfrac{100}{2}\)
\(=50\).
\(T=\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\left(\dfrac{1}{4}+1\right)...\left(\dfrac{1}{98}+1\right)\left(\dfrac{1}{99}+1\right)\)
\(T=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}....\dfrac{99}{98}.\dfrac{100}{99}\)
\(T=\dfrac{3.4.5......99}{3.4.5......99}.\dfrac{100}{2}\)
\(T=50\)
viết dạng tổng quát của 1 số tự nhiên :
a, có 2 chữ số là: ab
(a \(\in\) N*/ 0 < a < 10) và (b \(\in\) N/ b < 10)
b, có 3 chữ số là: abc
(a \(\in\) N*/ 0 < a < 10) và (b \(\in\) N/ b < 10) và (b \(\in\) N/ b < 10).
Trong phần b, mink sửa:
.........và (c \(\in\) N/ c <10)
Gọi thứ tự các ô trong dãy lần lượt là :
01;02;03;04;05;06;07 thì ta có:
01=04=07; 02=05 =176 ; 03=06=324;
Mà 01+02+03=1000 hay 01+176+324=1000
=>01+500=1000 => 01 = 500;
Số thích hợp để điền vào ô thứ nhất là 500...
Ta có :
\(A=\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+.........................+\dfrac{1}{81}+\dfrac{1}{10^2}\)
\(A=\dfrac{1}{4}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.....................+\dfrac{1}{9^2}+\dfrac{1}{10^2}\)
Mà :
\(\dfrac{1}{3^2}>\dfrac{1}{3.4}\)
\(\dfrac{1}{4^2}>\dfrac{1}{4.5}\)
\(\dfrac{1}{5^2}>\dfrac{1}{5.6}\)
.........................................
\(\dfrac{1}{9^2}>\dfrac{1}{9.10}\)
\(\dfrac{1}{10^2}>\dfrac{1}{10.11}\)
\(\Rightarrow A>\dfrac{1}{4}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+........................+\dfrac{1}{9.10}+\dfrac{1}{10^2}\)
\(\Rightarrow A>\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...................+\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}\)
\(\Rightarrow A>\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{11}\)
\(\Rightarrow A>\dfrac{7}{12}-\dfrac{1}{11}\)
\(\Rightarrow A>\dfrac{65}{132}\)\(\rightarrowđpcm\)
Ta có
A = \(\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{81}+\dfrac{1}{100}\)
A = \(\dfrac{1}{4}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{9.9}+\dfrac{1}{10.10}\)
Vì \(\dfrac{1}{3.3}>\dfrac{1}{3.4}\)
\(\dfrac{1}{4.4}>\dfrac{1}{4.5}\)
.................
\(\dfrac{1}{9.9}>\dfrac{1}{9.10}\)
\(\dfrac{1}{10.10}>\dfrac{1}{10.11}\)
=> A > \(\dfrac{1}{4}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}+\dfrac{1}{10.11}\)
A > \(\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}\)
A > \(\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{11}\)
A > \(\dfrac{7}{12}-\dfrac{1}{11}\)
A > \(\dfrac{65}{132}\)
Vậy A > \(\dfrac{65}{132}\) < đpcm)
Bài này có mẹo á ; giải ra dễ lắm !!!
\(\left(100-1^2\right)\left(100-2^2\right)....\left(100-10^2\right)......\left(100-20^2\right)\\ =\left(100-1\right).\left(100-4\right)....0....\left(100-400\right)=0\\ \)
Chúc bạn học tốt !!!
Gọi số cần tìm là \(n\) \(\left(n\in N\right)\)
Vì \(n⋮5\) và \(n⋮27\)
\(\Rightarrow n\) có chữ số tận cùng là \(0\) hoặc \(5\)
+) Xét \(n=\)*\(975\) chia hết cho \(9\) \(\Rightarrow\) *\(=6\). Thử lại \(6975\) \(⋮̸\) \(27\) \(\rightarrow loại\)
+) Xét \(n=\)*\(970\) chia hết cho \(9\) \(\Rightarrow\) *\(=2\) Thử lại \(2970⋮27\) (TM)
Vậy \(n=2970\) là giá trị cần tìm
~~Chúc bn học tốt!!~~
theo mk nghĩ là 27 = 3.9. C/m chia hết cho 27 thì c/m chia hết cho 3 và 9 nhưng mà ƯCLN(3,9)=3 kia mà. Bạn giải thích đoạn đó giúp mk đc ko?
Làm nhé! Nhưng thấy số to quá nên hơi hoang mang style ak!
Ta có: 7n2 + 8 = 7n2 - 42n + 42n - 252 + 260
= 7n.( n - 6) + 42.( n - 6) + 260
Vì n - 6 \(⋮\) n - 6 => \(\left\{{}\begin{matrix}7n.\left(n-6\right)⋮n-6\\42.\left(n-6\right)⋮n-6\end{matrix}\right.\)
=> Để 7n2 + 8 \(⋮\) n - 6 thì 260 \(⋮\) n - 6
=> n - 6 \(\in\) Ư(260) = \(\left\{\pm1;\pm2;\pm4;\pm5;\pm10;\pm20;\pm26;\pm52;\pm65;\pm130;\pm260\right\}\)
=> n \(\in\) \(\left\{7;5;8;4;10;2;11;1;16;-4;19;-7;26;-14;32;-20;58;-46;71;-59;136;-124;266;\right\};-254\)
1. Gọi số phần thưởng chia được nhiều nhất là a
Để chia 240 bút bi,210 bút chì và 180 quyển vở vào a phần thưởng mà mỗi phần thưởng có số bút bi, bút chì và tập vở như nhau thì 240, 210 và 180 phải chia hết cho a.
=> a thuộc Uc (240;210;180)
Mà a lớn nhất => a thuộc UCLN (240;210;180)
Ta có: 240 = 2^4 . 3 . 5
210 = 2 . 3 . 5 .7
180 = 2^2 . 3^2 . 5
UCLN (240'210;180) = 2 . 3 . 5 = 30
Vậy a = 30
Khi ấy: Mỗi phần thưởng có:
+ 240 : 30 = 8 (bút bi)
+ 210 : 30 = 7 (bút chì)
+ 180 : 30 = 6 (quyển vở)
2. Để cắt hết tấm bìa thành những hình vuông bằng nhau thì độ dài cạnh hình vuông phải là một ước chung của chiều dài và chiều rộng của tấm bìa. Do đó muốn cạnh hình vuông là lớn nhất thì đọ dài của cạnh phải là UCLN (75;105).
Vì: 75 = 3 . 5^2
105 = 3 . 5 . 7
=>UCLN (75;105) = 3 . 5 = 15
Đs: 15cm
Chúc bạn học tốt!