![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1)
- Phần hệ số: -5
- Phần biến: x3y
2)
- Để △ABC và △DEF bằng nhau thì cần thêm điều kiện BC=EF => △ABC = △DEF (cgc)
3)
a.
- Dấu hiệu ở đây là điểm kiểm tra môn Toán một tiết của mỗi học sinh lớp 7A.
-Mo=7
b.
x ̅= \(\dfrac{5.1+6.3+7.6+8.4+9.4+10.2}{20}=7.65\)
≈ 7.7 (điểm)
4)
a. A= 5x2y - 6xy - 2x2y + 6xy - 1
A= (5x2y - 2x2y) + (- 6xy + 6xy) -1
A= 3x2y -1
b. Thay x=2; y=-1 vào đa thức A có:
A = 3. 22. (-1) -1
A = 3. 4. (-1) -1
A= -12 - 1 = -13
Vậy giá trị của A tại x=2; y= -1 là -13
5) A(x) + B(x)=(3x3- 5x2 - 2x + 13)+(-2x3 + 3x2 + 2x - 5)
= (3x3 -2x3) + (- 5x2 + 3x2) + (- 2x + 2x) + (13 – 5)
= x^3 – 2x^2 + 8
6)
Cho 3x-12=0
3x = 0 + 12 = 12
x = 12 : 3
x = 6
Vậy nghiệm của đa thức 3x – 12 = 6
7)
a. Trong △PRK, PK < PR
=> gK > gR (quan hệ giữa cạnh và góc đối diện)
b. Áp dụng định lý Py-ta-go vào △PRK có:
KR2 = PK2+ PR2
= 122 + 162
= 144 + 256 = 400
=> KR= 20 cm
8.
a.
Xét △OAC vuông tại A và △OBC vuông tại B có:
OC chung
gOAC = gOBC
=> △OAC = △OBC (ch-gn)
b.
gOAC = gOBC
=> OC là đường phân giác
=> CB = CA (tính chất tia phân giác của một góc)
Vì △OAC = △OBC nên OA = OB (2 cạnh tương ứng)
=> △OAB cân tại A
Ta có:
CB = CA => C ∈ đường trung trực của AB (1)
OA = OB => O ∈ đường trung trực của AB (2)
Từ (1) và (2) => OC là đường trung trực của AB.
9)
a. Xét △AHC và △MHC vuông tại H có:
HC chung
gACH=gMCH (HC là đường phân giác)
=> △AHC =△MHC (cgv-gn)
=> MC = AC (2 cạnh tương ứng)
=> △AMC cân tại C
b. Cho OM ⊥ AB tại O, MI ⊥ AC tại I
Xét △AMI vuông tại I và △MAK vuông tại K có:
AM cạnh chung
gMAI = AMK (tg MAC cân)
=> △AMI = △MAK (cgv-gn)
Ta thấy: \(\widehat{I}=\widehat{A}=\widehat{M}=\widehat{K}=90\) độ
=> AIMO là hình chữ nhật
=> OM = AI; OA = MI
Xét △OMA và △IAM có:
AM chung
OM = AI (cmt)
OA = MI (cmt)
=>△OMA =△IAM (ccc)
=>△OMA =△IAM = tg KMA
=> g OAM = g KAM (2 góc tương ứng)
=> AM hay AH là đường phân giác g OAK
Mặt khác: AH ⊥ EN => AH là đường cao △ENA
AH là đường cao đồng thời là đường phân giác => △ENA cân
=> AH cũng là đường trung trực
Do đó: EH = HN nên H là trung điểm EN
![](https://rs.olm.vn/images/avt/0.png?1311)
+) TH1: Nếu x + y + t + z ≠ 0
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{y+z+t}=\frac{y}{x+z+t}=\frac{z}{x+y+t}=\frac{t}{x+y+z}=\frac{x+y+z+t}{y+z+t+x+z+t+x+y+t+x+y+z}=\frac{1}{3}\)
=> 3x = y + z + t => 4x = x + y + z + t (1)
3y = x + z + t 4y = x + y + z + t (2)
3z = x + y + t 4z = x + y + z + t (3)
3t = x + y + z 4t = x + y + z + t (4)
Từ (1)(2)(3)(4) => x = y = z = t
\(\Rightarrow\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}=1+1+1+1=4\)
+) TH2: Nếu x + y + z + t = 0
=> x + y = -(z + t)
y + z = -(x + t)
t + z = -(x + y)
t + x = -(y + z)
\(\Rightarrow\frac{x+y}{z+t}=\frac{y+z}{t+x}=\frac{z+t}{x+y}=\frac{t+x}{y+z}=-1\)
\(\Rightarrow\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
KL:...
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Có:
|x+5|=2x-1
Xét 2 TH:
TH1: x+5=2x-1
=> x-2x = -1 - 5
=> -x = -6
=> x = 6
TH2: x+5=-2x+1
=>x+2x=1-5
=>3x=-4
=>x=-4/3
![](https://rs.olm.vn/images/avt/0.png?1311)
Trả lời
bạn tham khảo câu hỏi tương tự nha !
Có câu trả lời đó !
Đừng ném gạch chọi đá nha !
doc de nghe ki ki vay co sai de khong do chua cho dieu kien duong thang a hoi ai lam duoc gg
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2-4x+5=\left(x-2\right)^2+1\ge0\)
Vậy M(x) không có nghiệm
Vì \(x^2\ge0;4x\ge0\Rightarrow x^2-4x+5\ge0+5>0\)
\(\Rightarrow M\left(x\right)=x^2-4x+5\)không có nghiệm