Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABD cân tại B mà ABD=120 nên D=A=30; tương tự tam giác ACE cân tại C nên E=A=30 suy ra tam giác ADE cân tại A( vì D=E=30)
a, áp dụng định lí py-ta-go vào tam giác vuông ta có:
\(BC^2=AB^2+AC^2\)
=> \(AC^2=BC^2-AB^2\)
=> \(AC^2\)= 169 - 25 =144 cm
=> AC=12 cm
vậy AC=12 cm
b, xét 2 t.giác vuông ABE và DBE có:
AB=DB(gt)
BE cạnh chung
=> t.giác ABE=t.giác DBE(cạnh huyền-cạnh góc vuông)
c, vì t.giác ABE=t.giác DBE(câu b) => AE=DE
xét 2 t.giác vuông AEF và DEC có:
AE=DE
\(\widehat{AEF}\)=\(\widehat{DEC}\)(vì đối đỉnh)
=> t.giác AEF=t.giác DEC(cạnh góc vuông-góc nhọn kề)
=> È=EC(2 cạnh tương ứng)
d, gọi O là giao điểm của EB và AD
xét t.giác ABO và t.giác DBO có:
OB cạnh chung
\(\widehat{ABO}\)=\(\widehat{DBO}\)(t.giác ABE=t.giác DBE)
AB=BD(gt)
=> t.giác ABO=t.giác DBO(c.g.c)
=> OA=OD=> O là trung điểm của AD(1)
\(\widehat{AOB}\)=\(\widehat{DOB}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AOB}\)=\(\widehat{DOB}\)=90 độ => BO\(\perp\)AD(2)
từ (1) và (2) => BE là trung trực của AD
A B C D E 5cm 13cm F O
Bài 1)
a) Xét ∆ vuông ABK và ∆ vuông EBK ta có :
AK = KC
BK chung
=> ∆ABK = ∆EBK ( ch-cgv)
=> AB = BE
=> ∆ABE cân tại B
Mà ABK = EBK
Hay BK là phân giác ABE
=> ∆ABE cân có BK là phân giác
=> BK là trung tuyến đồng thời là đường cao
=> BK\(\perp\)AE
b) Gọi H là giao điểm BK và DC
Xét ∆ vuông AKD và ∆ vuông EKC ta có
AK = KE
AKD = EKC ( đối đỉnh)
=> ∆AKD = ∆EKC ( cgv-gn)
=> AD = EC ( tương ứng)
Mà ∆ABE cân tại B (cmt)
=> AB = AE
Mà AB + AD = BD
BE + EC = BC
=> BD = BC
=> ∆BDC cân tại B
=> BDC = \(\frac{180°-B}{2}\)
Vì ∆ABE cân tại B
=> BAE = \(\frac{180°-B}{2}\)
=> BAE = BDC
Mà 2 góc này ở vị trí đồng vị
=> AE//DC
Vì H là giao điểm DC và BK
=> BH là phân giác DBC
Mà ∆BDC cân tại B (cmt)
=> BK đồng thời là trung tuyến và đường cao
=> BH \(\perp\)DC
Hay BK \(\perp\)DC
Bài 2)
Vì ∆ABC cân tại A
=> AB = AC
=> ABC = ACB
Xét ∆ vuông ABK và ∆ vuông ACE ta có :
AB = AC
A chung
=> ∆ABK = ∆ACE ( ch-gn)
=> ABK = ACE ( tương ứng)
Xét ∆AOB và ∆AOC ta có :
AB = AC
ABK = ACE
AO chung
=> ∆AOB = ∆AOC (c.g.c)
=> BAO = CAO
Hay AO là phân giác BAC
b) Vì ∆AKB = ∆AEC (cmt)
=> AE = AK
Mà AB = AC
=>EB = KC
Xét ∆ vuông KOC và ∆ vuông EOB ta có
EB = KC
EOB = KOC ( đối đỉnh)
=> ∆KOC = ∆EOB ( cgv-gn)
=> OB = OC
=> ∆OBC cân tại O
c) Xét ∆ cân ABC ta có :
AO là phân giác BAC
AI là trung tuyến BC
=> AI đồng thời là phân giác và là đường cao
=> A , O , I thẳng hàng
hình tự vẽ
\(\Delta ADE\)cân tại A =>\(\widehat{ADB}=\widehat{AEC};AD=AE\)
Xét \(\Delta ABD\)và \(\Delta ACE\)có
\(AD=AE\left(cmt\right)\)
\(\widehat{ADB}=\widehat{AEC}\left(cmt\right)\)
\(BD=CE\left(gt\right)\)
\(\Rightarrow\Delta ABD=\Delta ACE\left(c.g.c\right)\)
\(\Rightarrow AB=AC\left(t.ứng\right)\Rightarrow\Delta ABC\)cân tại A
b;Xét \(\Delta AHB\)và \(\Delta AKC\)có:
\(\widehat{AHB}=\widehat{AKC}\left(=90^o\right)\)
\(AB=AC\left(cmt\right)\)
\(\widehat{HAB}=\widehat{KAC}\left(vì\Delta ADB=\Delta AEC\right)\)
\(\Rightarrow\Delta AHB=\Delta AKC\left(ch-gn\right)\Rightarrow BH=CK\left(t.ứng\right)\)
c;Tam giác AHB = tam giác AKC (câu b )=> AH=AK (t.ứng)
Xét tam giác AHI và tam giác AKI có
góc AHI = góc AKI (90o)
AI chung
AH=AK(cmt)
=> tam giác ẠHI = tam giác AKI (ch-cgv)
=> góc AHI = góc AKI (t.ứng)
=> AI là tia phân giác góc BAC
p/s: câu c có thể sai nha
Tam giác ABE= tam giác ACD(c-g-c)