Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H E F
a/ Ta có : \(AC=\sqrt{BC^2-AB^2}=\sqrt{6^2-3^2}=3\sqrt{3}\)
Áp dụng hệ thức trong tam giác vuông : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{9}+\frac{1}{27}=\frac{4}{27}\Rightarrow AH^2=\frac{27}{4}\Rightarrow AH=\frac{3\sqrt{3}}{2}\)
b/ Dễ dàng chứng minh được AEHF là hình chữ nhật vì góc AFH = góc EAF = góc HEA = 90 độ
=> AH = EF
c/ \(EA.EB=HE^2\) ; \(AF.FC=HF^2\)
\(\Rightarrow EA.EB+AF.FC=HE^2+HF^2=EF^2=AH^2=\frac{27}{4}\)
A B C H
a) \(BC=BH+HC=2+6=8\)
Áp dụng hệ thức lượng ta có:
\(AH^2=BH.HC\)
\(\Rightarrow\)\(AH^2=2.6=12\)
\(\Rightarrow\)\(AH=\sqrt{12}=2\sqrt{3}\)
\(AB^2=BH.BC\)
\(\Rightarrow\)\(AB^2=2.8=16\)
\(\Rightarrow\)\(AB=4\)
\(AC^2=HC.BC\)
\(\Rightarrow\)\(AC^2=6.8=48\)
\(\Rightarrow\)\(AC=4\sqrt{3}\)
b) \(sinB=\frac{AH}{AB}=\frac{2\sqrt{3}}{4}=\frac{\sqrt{3}}{2}\)
\(cosB=\frac{BH}{AB}=\frac{2}{4}=\frac{1}{2}\)
\(tanB=\frac{AH}{BH}=\frac{2\sqrt{3}}{2}=\sqrt{3}\)
\(cotB=\frac{BH}{AH}=\frac{2}{2\sqrt{3}}=\frac{1}{\sqrt{3}}\)
b: Xét ΔAHB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
a, đkxđ : a >= 0 ; a khác 9
\(P=\dfrac{2\sqrt{a}\left(\sqrt{a}-3\right)+\left(\sqrt{a}+1\right)\left(\sqrt{a}+3\right)-3-7\sqrt{a}}{a-9}\)
\(=\dfrac{2a-6\sqrt{a}+a+4\sqrt{a}+3-3-7\sqrt{a}}{a-9}=\dfrac{3a-9\sqrt{a}}{a-9}=\dfrac{3\sqrt{a}}{\sqrt{a}+3}\)
b, \(\dfrac{3\sqrt{a}}{\sqrt{a}+3}=\dfrac{3\left(\sqrt{a}+3\right)-9}{\sqrt{a}+3}=3-\dfrac{9}{\sqrt{a}+3}\Rightarrow\sqrt{a}+3\inƯ\left(9\right)=\left\{1;3;9\right\}\)
\(\sqrt{a}+3\) | 1 | 3 | 9 |
a | loại | 0 | 36 |
c, Ta có : \(3=\dfrac{3\left(\sqrt{a}+3\right)}{\sqrt{a}+3}\)mà \(3\left(\sqrt{a}+3\right)>3\sqrt{a}\)
Vậy P < 3
d, Ta có : \(\dfrac{3\sqrt{a}}{\sqrt{a}+3}.\dfrac{\sqrt{a}-1}{\sqrt{a}}< 1\Leftrightarrow\dfrac{3\left(\sqrt{a}-1\right)}{\sqrt{a}+3}-1< 0\)
\(\Leftrightarrow\dfrac{3\sqrt{a}-3-\sqrt{a}-6}{\sqrt{a}+3}< 0\Rightarrow2\sqrt{a}-9< 0\)vì \(\sqrt{a}+3>0\)
\(\Leftrightarrow\sqrt{a}< \dfrac{9}{2}\Leftrightarrow a< \dfrac{81}{4}\)
Kết hợp đk vậy \(0\le a< \dfrac{81}{4}\)
b) Ta có: \(hpt\Leftrightarrow\hept{\begin{cases}5x=5m\\2x-y=m-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=m\\2m-y=m-1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=m\\y=m+1\end{cases}}}\)
Mà x+y>1 => m+m+1>1 <=> 2m>0 <=>m>0
Vậy m>0 (Tm)