K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 10 2024

Lời giải:

Cho $x=3$ thì:

$P(2)+2P(2)=2^2\Rightarrow 3P(2)=4\Rightarrow P(2)=\frac{4}{3}$

$\Rightarrow P(x-1)=x^2-2P(2)=x^2-2.\frac{4}{3}=x^2-\frac{8}{3}$

$\Rightarrow P(x)=(x+1)^2-\frac{8}{3}$

Thay $x=\sqrt{2013}-1$ ta có:

$P(\sqrt{2013}-1)=(\sqrt{2013}-1+1)^2-\frac{8}{3}=2013-\frac{8}{3}=\frac{6031}{3}$

6 tháng 11 2016

Theo đề ta có

\(x=2-\sqrt{3}\)

\(\Rightarrow\left(4-x\right)x=\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)=1\)

Q = x5 - 3x4 - 3x3 + 6x2 - 20x + 2020

= (x5 - 4x4) + (x4 - 4x3) + (x3 - 4x2) + (10x2 - 40x) + 20x + 2020

= - x3 - x2 - x - 10 + 20x + 2020

= (- x3 + 4x2) + ( - 5x2 + 20x) - x + 2010

= x + 5 - x + 2010 = 2015

5 tháng 11 2016

cau tra loi la chinh no

7 tháng 4 2016

Ta có P(2)+2P(2)=9

          3P(2)=9

           P(2)=3

Ta có P(\(\sqrt{2013}\)-1)+2P(2)=2013

          P(\(\sqrt{2013}\)-1)=2013-2P(2)=2013-2.3=2007

8 tháng 8 2016

Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) , dấu đẳng thức xảy ra khi và chỉ khi a = b

Ta có : \(M=\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}\ge\frac{4}{\sqrt{1+x^2}+\sqrt{1+y^2}}\)

Mặt khác, theo bđt Bunhiacopxki : \(\left(1.\sqrt{1+x^2}+1.\sqrt{1+y^2}\right)^2\le\left(1^2+1^2\right)\left(2+x^2+y^2\right)\)

\(\Rightarrow\sqrt{1+x^2}+\sqrt{1+y^2}\le\sqrt{20}=2\sqrt{5}\)

Do đó : \(M\ge\frac{4}{2\sqrt{5}}=\frac{2\sqrt{5}}{5}\). Dấu đẳng thức xảy ra \(\Leftrightarrow\hept{\begin{cases}x^2+y^2=8\\\sqrt{1+x^2}=\sqrt{1+y^2}\end{cases}\Leftrightarrow}x=y=2\)(vì x,y >0)

Vậy \(MinM=\frac{2\sqrt{5}}{5}\Leftrightarrow x=y=2\)

8 tháng 8 2016

\(M\ge\frac{\left(1+1\right)^2}{\sqrt{1+x^2}+\sqrt{1+y^2}}\ge\frac{4}{\frac{1+x^2+5+1+y^2+5}{2\sqrt{5}}}=\frac{2\sqrt{5}}{5}\)
dấu = xảy ra khi x=y và x^2+y^2=8=> x=y=2

5 tháng 3 2017

Nhân cả 2 vế của pt đầu với \(x-\sqrt{x^2+2013}\) được:

\(y+\sqrt{y^2+2013}=\sqrt{x^2+2013}-x\)

\(\Rightarrow x+y=\sqrt{x^2+2013}-\sqrt{y^2+3}\left(1\right)\)

Tương tự nhân 2 vế pt đầu với \(y-\sqrt{y^2+2013}\) được:

\(x+y=\sqrt{y^2+2013}-\sqrt{x^2+2013}\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) ta có: \(2\left(x+y\right)=0\Rightarrow x+y=0\)

5 tháng 3 2017

huhu ko ai giúp mình à @@

6 tháng 5 2017

Minh lam the nay : B= -3(X^2 - 2X + 5 )=-3(X-1)^2 -12 >= -12 . dau = xra khi X =1

7 tháng 4 2016

Ở dưới có đấy bạn

7 tháng 4 2016

ta có:thay x =3 ta được P(2)=3 =>P(\(\sqrt{2013}-1\))=2007