K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2022

Answer:

\(A=\left(\frac{x}{xy-y^2}+\frac{2x-y}{xy-x^2}\right).\frac{x^2y-xy^2}{x^2-2xy+y^2}\)

\(ĐK:\hept{\begin{cases}x;y\ne0\\x\ne y\end{cases}}\)

\(=\left(\frac{x}{\left(x-y\right)y}+\frac{2x-y}{x\left(y-x\right)}\right).\frac{xy\left(x-y\right)}{\left(x-y\right)^2}\)

\(=\frac{x^2+\left(-2xy+y^2\right)}{xy\left(x-y\right)}.\frac{\left(x-y\right)^2}{xy\left(x-y\right)}\)

\(=\frac{\left(x-y\right)^2}{xy\left(x-y\right)}.\frac{xy\left(x-1\right)}{\left(x-y\right)^2}\)

\(=1\)

18 tháng 1 2022

\(A=\left(\frac{x}{y\left(x-y\right)}+\frac{-2x+y}{x\left(x-y\right)}\right).\frac{xy\left(x-y\right)}{\left(x-y\right)^2}\)

\(=\frac{x^2-2xy+y^2}{xy\left(x-y\right)}.\frac{xy}{\left(x-y\right)}=1\)

a: Xét hình thang ABCD có MN//AB//CD

nên AM/AD=BN/BC

b: MA/AD+NC/BC

=BN/BC+NC/BC

=1

20 tháng 8 2018

b) \(27x^3-54x^2+36x=8\)

\(\Rightarrow27x^3-54x^2+36x-8=0\)

\(\Rightarrow\left(3x\right)^3-3.\left(3x\right)^2.2+3.3x.2^2-2^3=0\)

\(\Rightarrow\left(3x-2\right)^3=0\)

\(\Rightarrow3x-2=0\)

\(\Rightarrow3x=2\)

\(\Rightarrow x=\dfrac{2}{3}\)

20 tháng 8 2018

(2x-5)^2-(5+2x)^2=0
<=>(2x-5-5-2x)(2x-5+5+2x)=0
<=>(-10).(4x)=0
<=>(-40x)=0
<=>x =0
27x^3-54x^2+36x=8
<=>27x^3-54x^2+36x-8=0
<=>(3x-2)^3=0
<=>3x-2=0
<=>3x=2
<=>x=2/3

22 tháng 8 2018

(3x + 1)2 - (3x - 1)2

= (3x + 1 + 3x - 1)(3x + 1 - 3x + 1)

= 6x.2

= 12x

22 tháng 8 2018

các bạn giúp mih nốt mấy bài kia với mih đang cần gấp

24 tháng 8 2018

\(\left(1-2x\right)^2=\left(3x-2\right)^2\)

\(=\left(1-2x\right)^2-\left(3x-2\right)^2=0\)

\(\left(1-2x-3x+2\right)\left(1-2x+3x-2\right)=0\)

\(\left(3-5x\right)\left(x-1\right)=0\)

\(\Rightarrow3-5x=0\) \(x-1=0\)

\(\Rightarrow x=\frac{3}{5}\)  or \(x=1\)

b)\(\left(x-2\right)^3+\left(5-2x\right)^3\)

=\(\left(x-2+5-2x\right)\left(\left(x-2\right)^2-\left(x-2\right)\left(5-2x\right)+\left(5-2x\right)^2\right)\)

\(\left(3-x\right)\left(x^2-4x+4-5x+2x^2+10-4x+25-20x+4x^2\right)\)

(\(\left(3-x\right)\left(7x^2-33x+39\right)\)

..............

5 tháng 8 2019

Ta có: A = x2 - 5x + 1 = (x2 - 5x + 25/4) - 21/4 = (x - 5/2)2 - 21/4

Ta luôn có: (x - 5/2)2 \(\ge\)\(\forall\)x

=> (x - 5/2)2 - 21/4 \(\ge\)-21/4 \(\forall\)x

Dấu "=" xảy ra <=> x -5/2 = 0 <=> x = 5/2

Vậy Min A = -21/4 tại  x = 5/2

Ta có: B = -x + 3x + 1 = -(x - 3x  + 9/4) + 13/4 = -(x - 3/2)2 + 13/4

Ta luôn có: -(x - 3/2)2 \(\le\)\(\forall\)x

=> -(x - 3/2)2 + 13/4 \(\le\)13/4 \(\forall\)x

Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x  = 3/2

Vậy Max B = 13/4 tại x = 3/2

(xem lại đề)

19 tháng 8 2018

Ta có: 352-152 = (35-15)(35+15) = 20.40 = 800

19 tháng 8 2018

ý b đề đúng hay sai vậy bạn hum

31 tháng 8 2017

\(a^2+b^2+c^2+3=2\left(a+b+c\right)\)

\(\Leftrightarrow a^2-2a+1+b^2-2b+1+c^2-2c+1=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\Rightarrowđcpm\)

a²+b²+c²+3=2(a+b+c) 

=>a²-2a+1+b²-2b+1+c²-2c+1=1

=>(a-1) ² +(b-1) ² +(c-1) ²=1

=>a=b=c=1 dpcm

31 tháng 8 2017

\(a^2+b^2+c^2+3=2a+2b+2c\)

<=>\(\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)

<=>\(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)

Với mọi a;b;c thì \(\left(a-1\right)^2>=0\);\(\left(b-1\right)^2>=0\);\((c-1)^2>=0\)

Do đó \(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2>=0\)

Để \(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)thì ...(giải tìm a;b;c)

<=>a=b=c=1

Vậy a=b=c=1(đpcm)

31 tháng 8 2017

Áp dụng BĐT Cauchy ta có:

\(a^2+a+1\ge3a\)

\(b^2+b+1\ge3b\)

\(c^2+c+1\ge3c\)

Cộng 3 vế BĐT lại ta có:

\(a^2+b^2+c^2+\left(a+b+c\right)+3\ge3.\left(a+b+c\right)\)

\(\Rightarrow a^2+b^2+c^2+3\ge2.\left(a+b+c\right)\)

Dấu " = " xảy ra khi và chỉ khi \(a=b=c=1\)

Mà theo đề bài ta có:

\(a^2+b^2+c^2+3=2.\left(a+b+c\right)\)

\(a=b=c=1\) ( đpcm )