Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1 : x² + x² -12 = 0
a = 1 , b = 1 , c = -12
∆ = 1 -4 × 1 × (-12)
∆ = 49 > 0 .✓49 =7
Vậy pt có 2 ng⁰ pb ( tự viết nhé ) !
![](https://rs.olm.vn/images/avt/0.png?1311)
khi m=1 ta có phương trình khi đó là :
\(x^2-2x-1=0\Leftrightarrow\left(x-1\right)^2=2\Leftrightarrow x=1\pm\sqrt{2}\)
với mọi m , ta có \(\Delta'=m^2-\left(m-2\right)=m^2-m+2=\left(m-\frac{1}{2}\right)^2+\frac{7}{4}>0\forall m\)
vaajy phương trình có nghiệm với mọi m
![](https://rs.olm.vn/images/avt/0.png?1311)
a. Với \(m=-1\)ta có phương trình \(x^2+2x-8=0\Leftrightarrow\left(x+4\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=-4\\x=2\end{cases}}\)
Vậy với \(m=-1\)thì phương trình có 2 nghiệm \(x=-4;x=2\)
b. Ta có \(\Delta=\left(2m\right)^2-4\left(m-7\right)=4m^2-4m+28=\left(4m^2-4m+1\right)+27\ge27\forall m\)
Vậy phương trình luôn có 2 nghiệm phân biệt với mọi m
c. Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=m-7\end{cases}}\)
Để \(\frac{1}{x_1}+\frac{1}{x_2}=16\Leftrightarrow\frac{x_1+x_2}{x_1.x_2}=16\Leftrightarrow\left(x_1+x_2\right)^2=256x_1.x_2\)
\(\Leftrightarrow4m^2=256\left(m-7\right)\Leftrightarrow4m^2-246m+1792=0\Leftrightarrow\orbr{\begin{cases}m=8\\m=56\end{cases}\left(tm\right)}\)
Vậy với \(m=8\)hoặc \(m=56\)thì \(\frac{1}{x_1}+\frac{1}{x_2}=16\)
![](https://rs.olm.vn/images/avt/0.png?1311)
-Tìm \(\Delta\)để tìm điều kiện cho phương trình có 2 nghiệm
-Tìm tích \(x_1_{ }x_2=\frac{c}{a}\)để tìm đk cho 2 nghiệm khác 0
- Tìm tổng và tích 2 nghiệm theo định lí Vi-ét
- \(\frac{x_1}{x_2}+\frac{x_2}{x_1}+\frac{5}{2}=0\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}=\frac{-5}{2}\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=\frac{-5}{2}\)
\(\Leftrightarrow\frac{\left(x1+x2\right)^2}{x1x2}=\frac{-1}{2}\)
Thay tích với tổng vào để tính nhé.Mình bận chỉ hướng dẫn ý chính. Có gì sai sót bỏ qua cho
![](https://rs.olm.vn/images/avt/0.png?1311)
Với m = 2 phương trình trở thành
\(x^2-4x+3=0\)
\(\Leftrightarrow x^2-x-3x+3=0\)
\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
Vậy......
b) Phương trình có nghiệm là -1
\(\Leftrightarrow\left(m-1\right)+2m+m^2-1=0\)
\(\Leftrightarrow m^2+3m-2=0\)
\(\Delta=3^2-4.1.\left(-2\right)=17>0\)
=> pt có 2 nghiệm pbiet \(\left[{}\begin{matrix}x_1=\dfrac{-3+\sqrt{17}}{2}\\x_2=\dfrac{-3-\sqrt{17}}{2}\end{matrix}\right.\)
a) Thay m=2 vào pt
⇒ (2-1)x2-2 . 2 . x + 22 -1 = 0
⇒ x2- 4x + 3 = 0
⇒ x2- x -3x +3 =0
⇒x(x-1) -3(x-1)=0
⇒(x-1) (x-3) = 0
TH1 : x-1 =0
x= 1
TH2 : x-3 =0
x=3
Vậy x=1 ; x=3
b) Thay x=-1 vào pt
⇒ (m-1) . 1 + 2m + m2 -1 = 0
⇒ m-1 + 2m +m2 -1 = 0
⇒ m2 + 3m -2 = 0
⇒ m2 + \(\dfrac{3-\sqrt{17}}{2}\)m + \(\dfrac{3+\sqrt{17}}{2}\) m -2 =0
⇒ m( m + \(\dfrac{3-\sqrt{17}}{2}\) ) + 2 ( m +\(\dfrac{3-\sqrt{17}}{2}\)) =0
⇒ ( m+2) ( m + \(\dfrac{3-\sqrt{17}}{2}\)) = 0
Sau đó bn giải ra 2 TH là đc nha
khi m = 2 , ta có
khi m = 2 => x = -3 ; x = -1