\(\sqrt{\sqrt{x-17}+4}=291-34x+x^2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2017

17^2=289​

gọi lại: X-17=y​

​vp=y^2+2; vt=căn(căn(y)+4)

​căn(z+4)=z^4+2

​z^8+4z^4-z=0=>z=0 là nghiệm=>x=17.hoặc z^7+4z^3-1=0. Chịu có nghiêm 0<z<1 bậc cao quá potay

7 tháng 7 2017

a, ĐK \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)

\(P=\frac{x-1}{\sqrt{x}}:\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}\)

Ta thấy \(P=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}>0\forall x>0,x\ne1\)

b, P=\(\frac{x+2\sqrt{x}+1}{\sqrt{x}-1}=\frac{\frac{2}{2+\sqrt{3}}+2\sqrt{\frac{2}{2+\sqrt{3}}}+1}{\sqrt{\frac{2}{2+\sqrt{3}}}-1}\)

=\(\frac{\frac{4}{\left(\sqrt{3}+1\right)^2}+2.\sqrt{\left(\frac{2}{\left(\sqrt{3}+1\right)^2}\right)}+1}{\sqrt{\left(\frac{2}{2+\sqrt{3}}\right)^2}-1}=\frac{\frac{4}{\left(\sqrt{3}+1\right)^2}+2.\frac{2}{\sqrt{3}+1}+1}{\frac{2}{\sqrt{3}+1}-1}\)

\(=\frac{12+6\sqrt{3}}{1-3}=-6-3\sqrt{3}\)

7 tháng 7 2017

cậu ơi câu c đâu ạ??

6 tháng 7 2019

3/a) \(BĐT\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\)(đúng với mọi x, y không âm)

Đẳng thức xảy ra khi x = y

b) \(BĐT\Leftrightarrow\frac{\left(x-y\right)^2}{xy}\ge0\) (đúng với mọi x, y không âm)

"=" <=> x = y

c) BĐT \(\Leftrightarrow2a+2b+2\ge2\sqrt{ab}+2\sqrt{a}+2\sqrt{b}\)

\(\Leftrightarrow\left(a-2\sqrt{ab}+b\right)+\left(a-2\sqrt{a}+1\right)+\left(b-2\sqrt{b}+1\right)\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{a}-1\right)^2+\left(\sqrt{b}-1\right)^2\ge0\) (đúng)

"=" <=> a = b = 1

6 tháng 7 2019

1/ \(A=\sqrt{7-2\sqrt{7}.1+1}-\sqrt{7-2\sqrt{7}.\sqrt{2}+2}\)

\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}\)

\(=\left|\sqrt{7}-1\right|-\left|\sqrt{7}-\sqrt{2}\right|\) (thực ra em nghĩ ko cần thêm trị tuyệt đối đâu nhưng thêm cho chắc:D)

\(=\sqrt{7}-1-\sqrt{7}+\sqrt{2}=\sqrt{2}-1\)

2/Em thấy nó sai sai nên thôi:(

22 tháng 8 2018

Bài 1 :

Câu a : \(\sqrt{36}< \sqrt{37}\Leftrightarrow6< \sqrt{37}\)

Câu b : \(\sqrt{17}>\sqrt{16}\Leftrightarrow\sqrt{17}>4\)

Câu c : \(0,7< 0,8\Leftrightarrow\sqrt{0,7}< 0,8\)

Bài 2 :

Câu a : \(3< \sqrt{10}< 4\Leftrightarrow\sqrt{9}< \sqrt{10}< \sqrt{16}\) Đúng

Câu b : \(1,1< \sqrt{1,56}< 1,2\Leftrightarrow1,21< 1,56< 1,44\) Sai

22 tháng 8 2018

1. So sánh

a)\(6< \sqrt{37}\)

b) \(\sqrt{17}>4\)

c)\(\sqrt{0,7}>0,8\)

22 tháng 9 2020

b) Đặt a+b=s và ab=p. Ta có: \(a^2+b^2=4-\left(\frac{ab+2}{a+b}\right)^2\Leftrightarrow\left(a+b\right)^2-2ab+\frac{\left(ab+2\right)^2}{\left(a+b\right)^2}=4\)

\(\Leftrightarrow s^2-2p+\frac{\left(p+2\right)^2}{s^2}=4\Leftrightarrow s^4-2ps^2+\left(p+2\right)^2=4s^2\)

\(\Leftrightarrow s^4-2s^2\left(p+2\right)+\left(p+2\right)^2=0\Leftrightarrow\left(s^2-p-2\right)^2=0\)

\(\Leftrightarrow s^2-p-2=0\Leftrightarrow p+2=s^2\Leftrightarrow\sqrt{p+2}=\left|s\right|\Leftrightarrow\sqrt{ab+2}=\left|a+b\right|\)

Vì a, b là số hữu tỉ nên |a+b| là số hữu tỉ. Vậy \(\sqrt{ab+2}\)là số hữu tỉ

14 tháng 6 2018

1) Để : \(\sqrt{6x+1}\) xác định thì :

6x + 1 ≥ 0 ⇔ x ≥ \(\dfrac{-1}{6}\)

2) Để : \(\sqrt{\dfrac{-3}{2+x}}\) xác định thì :

\(\dfrac{-3}{2+x}\) ≥ 0 ( x # - 2)

⇔ 2 + x < 0 ⇔ x < - 2

3) Để : \(\sqrt{-8x}\) xác định thì :

-8x ≥ 0 ⇔ x < 0

4) Để : \(\sqrt{4-5x}\) xác định thì :

4 - 5x ≥ 0 ⇔ - 5x ≥ - 4 ⇔ x ≤ 4/5

Còn lại bạn giải tương tự nhé

27 tháng 6 2017

đúng rồi bạn nhé

27 tháng 6 2017

Tacó \(\Delta\)=(-7)2-4x1x2=41>0 =>\(\sqrt{_{ }x1}\)=\(\dfrac{7+\sqrt{41}}{2}\)=>\(_{x1}\)=\(\dfrac{\left(7+\sqrt{41}\right)^2}{4}\)=\(\dfrac{45+7\sqrt{41}}{2}\) =>\(\sqrt{_{ }x2}\)=\(\dfrac{7-\sqrt{41}}{2}\)=>\(_{x_2}\)=\(\dfrac{\left(7-\sqrt{41^{ }}\right)^2}{4}\)=\(\dfrac{45-7\sqrt{41}}{2}\) so sánh với điều kiện X>_0

27 tháng 7 2016

a) \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=1+\sqrt{2}\)

b)\(\frac{x-4}{2\left(\sqrt{x}+2\right)}\) (ĐK:x\(\ge0\))

\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{2\left(\sqrt{x}+2\right)}\)

\(=\frac{\sqrt{x}-2}{2}\)

c)\(\frac{x-5\sqrt{x}+6}{3\sqrt{x}-6}\) (ĐK:x\(\ge0;x\ne4\))

\(=\frac{x-3\sqrt{x}-2\sqrt{x}+6}{3\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)-2\left(\sqrt{x}-3\right)}{3\left(\sqrt{x}-2\right)}\)

\(=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{3\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}-3}{3}\)

27 tháng 7 2016

b) Tử \(x-4=\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\) (hằng đăngt thức số 3 )