Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ĐK \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)
\(P=\frac{x-1}{\sqrt{x}}:\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}\)
Ta thấy \(P=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}>0\forall x>0,x\ne1\)
b, P=\(\frac{x+2\sqrt{x}+1}{\sqrt{x}-1}=\frac{\frac{2}{2+\sqrt{3}}+2\sqrt{\frac{2}{2+\sqrt{3}}}+1}{\sqrt{\frac{2}{2+\sqrt{3}}}-1}\)
=\(\frac{\frac{4}{\left(\sqrt{3}+1\right)^2}+2.\sqrt{\left(\frac{2}{\left(\sqrt{3}+1\right)^2}\right)}+1}{\sqrt{\left(\frac{2}{2+\sqrt{3}}\right)^2}-1}=\frac{\frac{4}{\left(\sqrt{3}+1\right)^2}+2.\frac{2}{\sqrt{3}+1}+1}{\frac{2}{\sqrt{3}+1}-1}\)
\(=\frac{12+6\sqrt{3}}{1-3}=-6-3\sqrt{3}\)
a) Ta có:
\(A=\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-4}{\sqrt{x}-2\sqrt{x}}\)
\(A=\frac{\sqrt{x}-3}{\sqrt{x}-2}+\frac{\sqrt{x}-4}{\sqrt{x}}\)
\(A=\frac{\left(\sqrt{x}-3\right)\sqrt{x}+\left(\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\sqrt{x}}\)
\(A=\frac{x-3\sqrt{x}+x-6\sqrt{x}+8}{\left(\sqrt{x}-2\right)\sqrt{x}}\)
\(A=\frac{2x-9\sqrt{x}+8}{\left(\sqrt{x}-2\right)\sqrt{x}}\)
\(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne1\\x\ne9\end{cases}}\)
\(A=\sqrt{x}+1-\frac{17}{1-\sqrt{x}}\)
\(\Leftrightarrow A=\frac{x-1+17}{\sqrt{x}-1}\)
\(\Leftrightarrow A=\frac{x+16}{\sqrt{x}-1}\)
\(B=\frac{x-7}{x-4\sqrt{x}+3}+\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}-3}\)
\(\Leftrightarrow B=\frac{x-7+\sqrt{x}-3-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow B=\frac{x-9}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow B=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow B=\frac{\sqrt{x}+3}{\sqrt{x}-1}\)
Vậy \(P=\frac{x-16}{\sqrt{x}-1}:\frac{\sqrt{x}+3}{\sqrt{x}-1}\)
\(\Leftrightarrow P=\frac{\left(x-16\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow P=\frac{x-16}{\sqrt{x}+3}\)
b) Ta có : \(\sqrt{x}+3\ge3>0\)
Để P min \(\Leftrightarrow x-16\) min
Mà \(x-16\ge-16\)
Dấu " = " xảy ra \(\Leftrightarrow x=0\)
Vậy \(Min_P=\frac{-16}{3}\Leftrightarrow x=0\)
17^2=289
gọi lại: X-17=y
vp=y^2+2; vt=căn(căn(y)+4)
căn(z+4)=z^4+2
z^8+4z^4-z=0=>z=0 là nghiệm=>x=17.hoặc z^7+4z^3-1=0. Chịu có nghiêm 0<z<1 bậc cao quá potay