Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-3\right).\left(x-2015\right)< 0\)
\(\Rightarrow\left(x-3\right)và\left(x-2015\right)\) phải khác dấu
\(\Rightarrow\left(x-3\right)< \left(x-2015\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x-3>0\\x-2015< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>3\\x< 2015\end{matrix}\right.\)
\(\Rightarrow3< x< 2015\)
\(\Rightarrow x\in\left\{4;5;6;7;8;...;2013;2014\right\}\)
( ko bt đúng hay sai nx )
thám tử
\(\left(x-3\right)\left(x-2015\right)< 0\)
Với mọi \(x\in R\) thì:
\(x-2015< x-3\)
Khi đó: \(\left\{{}\begin{matrix}x-2015< 0\\x-3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 2015\\x>3\end{matrix}\right.\)
Nên \(3< x< 2015\)
4.
\(\left(0,36\right)^8=\left(\left(0,6\right)^2\right)^8=\left(0,6\right)^{16}\)
\(\left(0,216\right)^4=\left(\left(0,6\right)^3\right)^4=\left(0,6\right)^{12}\)
5.
a, \(\left(3\times5\right)^3=15^3=1125\)
b, \(\left(\frac{-4}{11}\right)^2=\frac{16}{121}\)
c, \(\left(0,5\right)^4\times6^4=\left(0,5\times6\right)^4=3^4=81\)
d, \(\left(\frac{-1}{3}\right)^5\div\left(\frac{1}{6}\right)^5=\left(\frac{-1}{3}\right)^5\times6^5=\left(\frac{-1}{3}\times6\right)^5=\left(-2\right)^5=-32\)
6.
a, \(\frac{6^2\times6^3}{3^5}=\frac{6^5}{3^5}=\frac{2^5\times3^5}{3^5}=2^5=32\)
b, \(\frac{25^2\times4^2}{5^5\times\left(-2\right)^5}=\frac{100^2}{\left(-10\right)^5}=\frac{10^4}{\left(-10\right)^5}=\frac{-1}{10}\)
c, Mình không nhìn rõ đề
d, \(\left(-2\frac{3}{4}+\frac{1}{2}\right)^2=\left(\frac{-11}{4}+\frac{1}{2}\right)^2=\left(\frac{-9}{4}\right)^2=\frac{81}{16}\)
7.
a, \(\left(\frac{1}{3}\right)^m=\frac{1}{81}\Rightarrow\left(\frac{1}{3}\right)^m=\left(\frac{1}{3}\right)^4\Rightarrow m=4\)
b, \(\left(\frac{3}{5}\right)^n=\left(\frac{9}{25}\right)^5\Rightarrow\left(\frac{3}{5}\right)^n=\left(\left(\frac{3}{5}\right)^2\right)^5\Rightarrow\left(\frac{3}{5}\right)^n=\left(\frac{3}{5}\right)^{10}\Rightarrow n=10\)
c, \(\left(-0,25\right)^p=\frac{1}{256}\Rightarrow\left(-0,25\right)^p=\left(\frac{1}{4}\right)^4\Rightarrow\left(-0,25\right)^p=\left(0,25\right)^4\Rightarrow p=4\)
8.
a, \(\left(\frac{2}{5}+\frac{3}{4}\right)^2=\left(\frac{23}{20}\right)^2=\frac{529}{400}\)
b, \(\left(\frac{5}{4}-\frac{1}{6}\right)^2=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)
2.
a) +) ta co: tam giác GLO
GL = 6, LO = 8, OG = 10
=> GL < LO < GO ( 6<8<10)
=> góc O < góc G < góc L ( quan hệ giữa góc và cạnh đối diện trong tam giác LOG )
+) ta co: tam giac UVW
góc V = 40, góc U = 50
=> góc W = 180 - ( góc V + goc Ư )
= 180 - ( 50 + 40)
= 90
=> góc V < góc U < góc W
=> UW < VW < VU ( quan hệ giữa cạnh và góc trong tam giác ACB )
b: |2x-1|<5
=>2x-1>-5 và 2x-1<5
=>2x>-4 và 2x<6
=>-2<x<3
mà x là số nguyên dương
nên \(x\in\left\{1;2\right\}\)
Ta có: \(\left|x-1\right|+\left|x-5\right|=\left|x-1\right|+\left|5-x\right|\)
Nhận thấy: \(\left[{}\begin{matrix}\left|x-1\right|\ge x-1\\\left|5-x\right|\ge5-x\end{matrix}\right.\)
\(\Rightarrow\left|x-1\right|+\left|5-x\right|\ge x-1+5-x\)
\(\Rightarrow\left|x-1\right|+\left|5-x\right|\ge4\)
Dấu \("="\) xảy ra khi:
\(\left[{}\begin{matrix}x-1\ge0\\5-x\ge0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\ge1\\x\le5\end{matrix}\right.\) \(\Rightarrow1\le x\le5\)
Vậy \(1\le x\le5.\)
Cho mk thêm cái ạ:
\(x\in\left\{1;2;3;4;5\right\}\)
Vậy \(x\in\left\{1;2;3;4;5\right\}\)
Từ \(\dfrac{9x}{4}\)=\(\dfrac{16}{x}\)
9x\(^2\)=4*16=69
=>x\(^2\)=69/9=\(\dfrac{64}{9}\)
=>x=\(\dfrac{-8}{3}\)
\(\left(x-3\right)^2+\left|y^2-9\right|=0\)
Vì \(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\forall x\\\left|y^2-9\right|\ge0\forall y\end{matrix}\right.\)
để bt = 0 \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left|y^2-9\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y^2-9=0\Rightarrow y^2=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\\left[{}\begin{matrix}y=3\\y=-3\end{matrix}\right.\end{matrix}\right.\)
Vậy.....
\(\left(x-3\right)^2+\left|y^2-9\right|=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-3\right)^2=0\\\left|y^2-9\right|=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\y^2-9=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\y^2=9\left[{}\begin{matrix}y=3\\y=-3\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=3\\y=3hoặcy=-3\end{matrix}\right.\)